DE GRUYTER OPEN

Multipliers and convolution spaces for the Hankel space and its dual on the half space $[0, +\infty[\times \mathbb{R}^n]$

C. Baccar

Cyrine Baccar Institut Supérieur d'Informatique, Département de mathématiques appliquées 2, rue Abourraihan Al Bayrouni 2080, Ariana, Tunis

E-mail: cyrine.baccar@isi.rnu.tn

Abstract

We define the Hankel space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n); \mu \ge -\frac{1}{2}$, and its dual $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. First, we characterize the space $\mathscr{M}_{\mu}([0, +\infty[\times\mathbb{R}^n) \text{ of multipliers of the space } \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. Next, we define a subspace $\mathbb{O}'_{\mu}([0, +\infty[\times\mathbb{R}^n) \text{ of the dual } \mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ which permits to define and study a convolution product * on $\mathbb{H}'_{\mu}([0, +\infty[\times\mathbb{R}^n) \text{ and we give nice properties.})$

2010 Mathematics Subject Classification. **42B10**. 42B15 Keywords. Hankel space, Fourier-Hankel transform, multipliers, convolution product.

1 Introduction.

We define the Hankel space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n), \mu \ge -\frac{1}{2}$ to be the space of infinitely differentiable functions f on $]0, +\infty[\times\mathbb{R}^n$, such that for all $(k_1, \alpha), (k_2, \beta) \in \mathbb{N} \times \mathbb{N}^n$, the function

$$(r,x)\mapsto r^{k_1}x^{\alpha}(\frac{\partial}{\partial r^2})^{k_2}D_x^{\beta}(r^{-\mu-\frac{1}{2}}f(r,x))$$

is bounded on $[0, +\infty] \times \mathbb{R}^n$. Where

•
$$\frac{\partial}{\partial r^2} = \frac{1}{r} \frac{\partial}{\partial r}$$
.
• $D_x^{\beta} = \left(\frac{\partial}{\partial x_1}\right)^{\beta_1} \dots \left(\frac{\partial}{\partial x_n}\right)^{\beta_n}; \beta = (\beta_1, \beta_2, \dots, \beta_n)$.
• $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}; \alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$.

The space $\mathbb{H}_{u}([0, +\infty[\times\mathbb{R}^{n})])$ is equipped with a topology for which it is a Fréchet one [2, 10].

Our investigation in this work is to determine the space of multipliers of $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and a convolution space for the dual space $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ of $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$.

More precisely, in the second section we define a family of norms N_m^{μ} , $m \in \mathbb{N}$ and a distance d_{μ} on the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and we recall some properties. Next, we give the classical description of the element of $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. Also, we define the Fourier-Hankel transform \mathscr{H}_{μ} that will be a topological isomorphism from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ onto itself and from $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ onto itself.

The spaces $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ play for the Fourier-Hankel transform \mathscr{H}_{μ} the same role that play the Schwartz space's $\mathscr{S}_e(\mathbb{R}\times\mathbb{R}^n)$ (the space of infinitely differentiable functions on $\mathbb{R}\times\mathbb{R}^n$ rapidly decreasing together with all their derivatives, even with respect to the first variable) and its dual

 $\mathscr{S}'_{e}(\mathbb{R}\times\mathbb{R}^{n})$ for the usual Fourier transform \mathscr{F} [7].

Tbilisi Mathematical Journal 9(1) (2016), pp. 197–220. Tbilisi Centre for Mathematical Sciences.

Received by the editors: 02 August 2015. Accepted for publication: 10 January 2016. The second section is devoted to define and study the space of multipliers $\mathscr{M}_{\mu}([0, +\infty[\times\mathbb{R}^n]))$. This space is formed by the infinitely differentiable functions θ on $[0, +\infty[\times\mathbb{R}^n])$ such that the mapping

 $\phi \mapsto \theta \phi$

is continuous from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ into itself. Then we give a nice characterization of the elements of $\mathscr{M}_{\mu}([0, +\infty[\times\mathbb{R}^n).$

In the last section, using the fact that the Fourier-Hankel transform is an isomorphism from $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ onto itself; we define a subspace $\mathbb{O}'_{\mu}([0, +\infty[\times\mathbb{R}^n) \text{ of } \mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ which permits to define the convolution product of an element $T \in \mathbb{O}'_{\mu}([0, +\infty[\times\mathbb{R}^n) \text{ and } S \in \mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. We prove in particulier that for every $T \in \mathbb{O}'_{\mu}([0, +\infty[\times\mathbb{R}^n])$; the mapping

$$S \mapsto T * S$$

is continuous from $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ into itself and we have

$$\mathscr{H}_{\mu}(T*S) = \lambda_0^{-\mu - \frac{1}{2}} \mathscr{H}_{\mu}(T)(\lambda_0, \lambda) \mathscr{H}_{\mu}(S)$$

in $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n).$

2 The multipliers of the Hankel space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$.

Through out this paper, μ is a real number; $\mu \ge -\frac{1}{2}$. For all $m \in \mathbb{N}$, we define the norm N_m^{μ} on the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ by setting

$$N_{m}^{\mu}(f) = \sup_{\substack{(r,x)\in[0,+\infty[\times\mathbb{R}^{n}\\k_{1}+k_{2}+|\alpha|\leqslant m}} \left(1+r^{2}+|x|^{2}\right)^{k_{1}} \left| \left(\frac{\partial}{\partial r^{2}}\right)^{k_{2}} D_{x}^{\alpha} \left(r^{-\mu-\frac{1}{2}}f\right)(r,x) \right|.$$
(2.1)

Where $|x|^2 = x_1^2 + ... + x_n^2$; $x = (x_1, ..., x_n) \in \mathbb{R}^n$. And the distance

$$d_{\mu}(f,g) = \sum_{m=0}^{\infty} \frac{1}{2^m} \frac{N_m^{\mu}(f-g)}{1 + N_m^{\mu}(f-g)}$$

It is well known that a sequence $(f_k)_k$ converges to zero in $(\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n), d_{\mu})$ if and only if

$$\forall m \in \mathbb{N}, \quad \lim_{k \to +\infty} N^{\mu}_m(f_k) = 0.$$

Moreover, the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ is a Fréchet space when endowed with the topology generated by $(N_m^{\mu})_{m\in\mathbb{N}}$.

Definition 2.1. A function θ defined on $[0, +\infty[\times\mathbb{R} \text{ is said to be a multiplier of the Hankel space } \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ if the mapping

$$\phi \mapsto \theta \phi$$

is continuous from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ into itself.

The space formed by the multipliers of $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ will be denoted by $\mathscr{M}_{\mu}([0, +\infty[\times\mathbb{R}^n).$

In this section, we give a nice characterization of the space $\mathscr{M}_{\mu}([0, +\infty[\times\mathbb{R}^n); also we define a topology on this space and we establish some interesting results.$

Lemma 2.2. For all $a, b \in \mathbb{R}$, we have

$$\frac{1+a^2}{1+b^2} \leqslant 2(1+|a-b|^2).$$

Proof. The result is an immediate consequence of the Peetre's inequality [1, 8], that is if t is a real number and x, y are vectors in \mathbb{R}^n , then

$$\left(\frac{1+|x|^2}{1+|y|^2}\right)^{|t|} \leqslant 2^{|t|} (1+|x-y|^2)^{|t|}.$$
 Q.E.D.

Lemma 2.3. Let f be an infinitely differentiable function on \mathbb{R} , $supp(f) = [\frac{1}{2}, \frac{3}{2}]$ and f(1) = 1. Let $((r_k, x_k))_k$ be a sequence in $[0, +\infty[\times\mathbb{R}^n]$, such that

$$|(r_0, x_0)|^2 > 1$$
 and $|(r_{k+1}, x_{k+1})|^2 > |(r_k, x_k)|^2 + 1.$

Then, the function ϕ_0 defined by

$$\varphi_0(r,x) = r^{\mu + \frac{1}{2}} \sum_{k=0}^{\infty} \frac{f(|(r,x)|^2 - |(r_k,x_k)|^2 + 1)}{\left(|(r_k,x_k)|^2 + 1\right)^k}$$

belongs to the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ *.*

Proof. Let $\rho \in \mathbb{R}$, $\rho > 1$. For all $(r,x) \in B(0,\rho) = \{(r,x) \in [0,+\infty[\times \mathbb{R}^n, r^2 + |x|^2 < \rho^2\}$, we have

$$r^{-\mu-\frac{1}{2}}\phi_0(r,x) = \sum_{k=0}^{k_0} \frac{f(|(r,x)|^2 - |(r_k,x_k)|^2 + 1)}{\left(|(r_k,x_k)|^2 + 1\right)^k},$$

where $k_0 = [|-\frac{1}{2} + \rho^2|] + 1$, because $supp(f) = [\frac{1}{2}, \frac{3}{2}]$.

Consequently, the function

$$(r,x)\longmapsto r^{-\mu-\frac{1}{2}}\varphi_0(r,x)$$

is infinitely differentiable on $[0, +\infty[\times \mathbb{R}^n]$. Moreover, for all $j, m \in \mathbb{N}$ and $\alpha \in \mathbb{N}^n$, we get

$$(1+r^2+|x|^2)^m \left| \left(\frac{\partial}{\partial r^2}\right)^j D_x^{\alpha} \left(r^{-\mu-\frac{1}{2}} \varphi_0\right)(r,x) \right| \leq 2^j (1+r^2+|x|^2)^m P_{j,\alpha}(x) \sum_{k=0}^{\infty} \frac{f^{j+|\alpha|}(r^2+|x|^2-r_k^2-|x_k|^2+1)}{\left(r_k^2+|x_k|^2+1\right)^k}$$

Where $P_{j,\alpha}$ is a real polynomial on \mathbb{R}^n . Thus, there exist an integer *l* and a positive constant $C_{j,\alpha}$ such that

$$\left(1+r^2+|x|^2\right)^m \left| \left(\frac{\partial}{\partial r^2}\right)^j D_x^{\alpha} \left(r^{-\mu-\frac{1}{2}} \varphi_0\right)(r,x) \right| \leq C_{j,\alpha} \sum_{k=0}^{\infty} (1+r^2+|x|^2)^l \frac{\left| f^{j+|\alpha|} (r^2+|x|^2-r_k^2-|x_k|^2+1) \right|}{\left(r_k^2+|x_k|^2+1\right)^k} .$$

However, Lemma 2.2 involves

$$(1+r^{2}+|x|^{2})^{l} \leq 2^{l}(1+r_{k}^{2}+|x_{k}|^{2})^{l} \left(1+\left[\sqrt{r^{2}+|x|^{2}}-\sqrt{r_{k}^{2}+|x_{k}|^{2}}\right]^{2}\right)^{l}$$
$$\leq 2^{l}(1+r_{k}^{2}+|x_{k}|^{2})^{l} \left(1+|r^{2}+|x|^{2}-r_{k}^{2}-|x_{k}|^{2}|\right)^{l}$$
$$\leq 2^{l}(1+r_{k}^{2}+|x_{k}|^{2})^{l} \left(2+\left(r^{2}+|x|^{2}-r_{k}^{2}-|x_{k}|^{2}\right)^{2}\right)^{l}.$$

Consequently,

$$\left(1+r^{2}+|x|^{2}\right)^{m}\left|\left(\frac{\partial}{\partial r^{2}}\right)^{j}D_{x}^{\alpha}\left(r^{-\mu-\frac{1}{2}}\varphi_{0}\right)(r,x)\right| \leq 2^{l}C_{j,\alpha}\sum_{k=0}^{\infty}\left(2+\left(r^{2}+|x|^{2}-r_{k}^{2}+|x_{k}|^{2}\right)^{2}\right)^{l}\left|\frac{f^{j+|\alpha|}(r^{2}+|x|^{2}-r_{k}^{2}-|x_{k}|^{2}+1)}{\left(r_{k}^{2}+|x_{k}|^{2}+1\right)^{k-l}}\right|.$$

On the other hand from the hypothesis, for all $k \in \mathbb{N}$, we have

$$r_k^2 + |x_k|^2 > k + 1$$

finally, for all $(r, x) \in [0, +\infty[\times \mathbb{R}^n \text{ we get }$

$$\left(1+r^{2}+|x|^{2}\right)^{m}\left|\left(\frac{\partial}{\partial r^{2}}\right)^{j}D_{x}^{\alpha}\left(r^{-\mu-\frac{1}{2}}\varphi_{0}\right)(r,x)\right| \leq 2^{l}C_{j,\alpha}N_{\alpha,j,l}(f)\sum_{k=0}^{\infty}\frac{1}{(k+2)^{k-l}},$$

where $N_{\alpha,j,l}(f) = \sup_{t \in \mathbb{R}} (2 + (t-1)^2)^l |f^{j+|\alpha|}(t)|.$

Theorem 2.4. The following assumptions are equivalent

i) The function θ is infinitely differentiable on $[0,\infty[\times\mathbb{R}^n \text{ and for all } (k,\alpha) \in \mathbb{N} \times \mathbb{N}^n$ the function

$$(\frac{\partial}{\partial r^2})^k D_x^{\alpha}(\theta)$$

is slowly increasing, i.e there exists $m_{k,\alpha} \in \mathbb{N}$ such that the function

$$(r,x) \mapsto (1+r^2+|x|^2)^{-m_{k,\alpha}} (\frac{\partial}{\partial r^2})^k D_x^{\alpha}(\theta)(r,x)$$

is bounded on $[0,\infty[\times\mathbb{R}^n]$.

ii) The function θ is a multiplier of the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$.

iii) The function θ is infinitely differentiable on $]0,\infty[\times\mathbb{R}^n$ and for all $(k,\alpha) \in \mathbb{N} \times \mathbb{N}^n$, the mapping $\varphi \mapsto (\frac{\partial}{\partial r^2})^k D_x^{\alpha}(\theta)\varphi$ is a continuous endomorphism of $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$.

Proof. Suppose that *i*) is satisfied. Let φ be in $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. It is clear that $\theta\varphi$ is an infinitely differentiable function on $]0, \infty[\times\mathbb{R}^n$ and for all $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$,

$$\begin{pmatrix} \frac{\partial}{\partial r^2} \end{pmatrix}^k D_x^{\alpha} \left(r^{-\mu - \frac{1}{2}} \theta \varphi \right)(r, x) = \\ \sum_{j=0}^k \sum_{\beta + \gamma = \alpha} \frac{k!}{j! (k-j)!} \frac{\alpha!}{\beta! \gamma!} \left(\frac{\partial}{\partial r^2} \right)^j D_x^{\gamma} \theta(r, x) \left(\frac{\partial}{\partial r^2} \right)^{k-j} D_x^{\beta} \left(r^{-\mu - \frac{1}{2}} \varphi \right)(r, x)$$

Where $\alpha! = \alpha_1!...\alpha_n!$, $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$. Let $m \in \mathbb{N}$ and $(k_1, k_2, \alpha) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}^n$ such that $k_1 + k_2 + |\alpha| \leq m$. From the hypothesis there exist $l \in \mathbb{N}$ and C_m such that for all $(j, \gamma) \in \mathbb{N} \times \mathbb{N}^n$, $j + |\gamma| \leq m$, we have

$$\left| \left(\frac{\partial}{\partial r^2} \right)^j D_x^{\gamma} \theta(r, x) \right| \leqslant C_m (1 + r^2 + |x|^2)^l.$$

So,

$$\begin{split} & \left| (1+r^2+|x|^2)^{k_1} (\frac{\partial}{\partial r^2})^{k_2} D_x^{\alpha} (r^{-\mu-\frac{1}{2}} \Theta \varphi)(r,x) \right| \\ & \leqslant C_m (1+r^2+|x|^2)^{l+k_1} \sum_{j=0}^{k_2} \sum_{\beta+\gamma=\alpha} \frac{k_2!}{j!(k_2-j)!} \frac{\alpha!}{\beta!\gamma!} \left| (\frac{\partial}{\partial r^2})^{k_2-j} D_x^{\beta} (r^{-\mu-\frac{1}{2}} \varphi)(r,x) \right| \\ & \leqslant C_m N_{m+l}^{\mu}(\varphi) \sum_{j=0}^{k_2} \left(\frac{k_2!}{j!(k_2-j)!} \right) \left(\sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!} \right) = 2^{k_2} 2^{|\alpha|} C_m N_{m+l}^{\mu}(\varphi) \\ & \leqslant 2^m C_m N_{m+l}^{\mu}(\varphi). \end{split}$$

This inequality shows that for every $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$, the function $\theta\varphi$ belongs to the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and that the mapping $\varphi \longmapsto \theta\varphi$ is continuous from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ into itself.

. Suppose that θ is a multiplier of the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. Let ψ be the element of $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ defined by

$$\Psi(r,x) = r^{\mu+\frac{1}{2}}e^{-r^2-|x|^2}.$$

From the hypothesis the function

$$\varphi(r,x) = \theta(r,x)\psi(r,x),$$

belongs to the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and we have

$$\theta(r,x) = r^{-\mu - \frac{1}{2}} e^{r^2 + |x|^2} \phi(r,x), \qquad (2.2)$$

this shows that the function θ is infinitely differentiable on $]0, +\infty[\times \mathbb{R}^n]$.

Now, the partial differential operators $\Box f(r,x) = r^{\mu+\frac{1}{2}} (\frac{\partial}{\partial r^2})(r^{-\mu-\frac{1}{2}}f)(r,x)$ and $\frac{\partial}{\partial x_j}$; $1 \leq j \leq n$, are continuous from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ into itself, and for every $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$, we have

$$(\frac{\partial}{\partial r^2})^k D_x^{\alpha}(\theta) \varphi = \sum_{j=0}^k \sum_{\beta+\gamma=\alpha} (-1)^{k-j} (-1)^{|\beta|} \frac{k!}{j!(k-j)!} \frac{\alpha!}{\beta!\gamma!} (\frac{\partial}{\partial r^2})^j D_x^{\gamma} \left(\Box^j \left(\theta \Box^{k-j} D_x^{\beta} \varphi \right) \right)$$

Since θ is a multiplier of the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$, the last equality shows that for all $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$, the mapping

$$\mathbf{\phi} \longmapsto (\frac{\partial}{\partial r^2})^k D_x^{\alpha}(\mathbf{\theta}) \mathbf{\phi},$$

is continuous from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ into itself.

. Suppose that the function θ satisfies the assertion iii). From the relation (2.2), and for every $k \in \mathbb{N}$,

$$\left(\frac{\partial}{\partial r^2}\right)^k(\theta)(r,x) = e^{r^2 + |x|^2} \sum_{j=0}^k C_k^j 2^j \left(\frac{\partial}{\partial r^2}\right)^{k-j} \left(r^{-\mu - \frac{1}{2}}\phi\right)(r,x).$$

Let us prove that for every $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$ the function $(\frac{\partial}{\partial r^2})^k D_x^{\alpha}(\theta)$ is slowly increasing. In fact, suppose that there exists $(k_0, \alpha_0) \in \mathbb{N} \times \mathbb{N}^n$, such that the function $(\frac{\partial}{\partial r^2})^{k_0} D_x^{\alpha_0}(\theta)$ is not slowly increasing. Then, there exists a sequence $((r_j, x_j))_j \subset [0, \infty[\times \mathbb{R}^n \text{ such that}]$

• $r_0^2 + |x_0|^2 > 1.$

•
$$r_{j+1}^2 + |x_{j+1}|^2 > 1 + r_j^2 + |x_j|^2$$
.

• $\frac{(\frac{\partial}{\partial r^2})^{k_0}D_x^{\alpha_0}(\boldsymbol{\theta})(r_j,x_j)}{(1+r_j^2+|x_j|^2)^j}>1.$

From Lemma 2.3, the function

$$\varphi_0(r,x) = r^{\mu+\frac{1}{2}} \sum_{k=0}^{\infty} \frac{f(r^2+|x|^2-r_k^2-|x_k|^2+1)}{\left(1+r_k^2+|x_k|^2\right)^k}$$

belongs to the Hankel space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and for all $j \in \mathbb{N}$, we have

$$\begin{split} \left| \left(\frac{\partial}{\partial r^2}\right)^{k_0} D_x^{\alpha_0}(\theta)(r_j, x_j) r_j^{-\mu - \frac{1}{2}} \varphi(r_j, x_j) \right| &> \frac{f(1)}{(1 + r_j^2 + |x_j|^2)^j} \left| \left(\frac{\partial}{\partial r^2}\right)^{k_0} D_x^{\alpha_0}(\theta)(r_j, x_j) \right| \\ &= \frac{\left| \left(\frac{\partial}{\partial r^2}\right)^{k_0} D_x^{\alpha_0}(\theta)(r_j, x_j) \right|}{(1 + r_j^2 + |x_j|^2)^j} > 1. \end{split}$$

This contradicts the hypothesis, because

$$\lim_{j \to +\infty} (\frac{\partial}{\partial r^2})^{k_0} D_x^{\alpha_0}(\theta)(r_j, x_j) r_j^{-\mu - \frac{1}{2}} \varphi(r_j, x_j) = 0$$

The proof of the theorem is complete.

Remark 2.1. From Theorem 2.4 i) and ii), we deduce that the space of multipliers $\mathcal{M}_{\mu}([0, +\infty[\times\mathbb{R}^n)$ is independent of the real parameter μ and will be denoted by $\mathcal{M}([0, +\infty[\times\mathbb{R}^n)]$.

In the following, we will define and study a topology of the space $\mathcal{M}([0, +\infty[\times \mathbb{R}^n]))$.

For every $m \in \mathbb{N}$ and $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$, we denote by $\rho_{m,\varphi}^{\mu}$ the seminorm defined on $\mathscr{M}([0, +\infty[\times\mathbb{R}^n))$ by

$$\rho_{m,\varphi}^{\mu}(\theta) = \sup_{\substack{(r,x)\in[0,+\infty[\times\mathbb{R}^n]\\k+|\alpha|\leqslant m}} \left| r^{-\mu-\frac{1}{2}} \varphi(r,x) \left(\frac{\partial}{\partial r^2}\right)^k D_x^{\alpha}(\theta)(r,x) \right|$$

and we define a basic of neighborhoods of zero in $\mathcal{M}([0, +\infty[\times\mathbb{R}^n)$ by setting

$$\mathscr{W}^{\mu}(0) = \left\{ B^{\mu}_{m,\phi,\varepsilon}(0); \ m \in \mathbb{N}, \ \phi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n), \ \varepsilon > 0 \right\}$$
(2.3)

where

$$B^{\mu}_{m,\phi,\epsilon}(0) = \left\{ \theta \in \mathscr{M}([0,+\infty[\times \mathbb{R}^n); \, \rho^{\mu}_{m,\phi}(\theta) < \epsilon \right\}$$

Then, a sequence $(\theta_k)_k$ converges to zero in $\mathscr{M}([0, +\infty[\times\mathbb{R}^n)$ if and only if for all $m \in \mathbb{N}$ and $\varphi \in \mathbb{H}_{\mu}([0, +\infty[\times\mathbb{R}^n)])$,

$$\lim_{k\to+\infty}\rho^{\mu}_{m,\varphi}(\boldsymbol{\theta}_k)=0.$$

Since the mapping $\varphi \mapsto r^{\nu-\mu}\varphi = \Phi$ is a topological isomorphism from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ into $\mathbb{H}_{\nu}(]0, +\infty[\times\mathbb{R}^n)$ and using the fact that for all $m \in \mathbb{N}$ and $\theta \in \mathscr{M}([0, +\infty[\times\mathbb{R}^n), we have$

$$\rho_{m,\phi}^{\mu}(\theta) = \rho_{m,\Phi}^{\nu}(\theta),$$

it follows that the set $\mathscr{W}^{\mu}(0)$ defined by the relation (2.3) is independent of the real parameter μ and will be denoted by $\mathscr{W}(0)$.

Proposition 2.5. *i)* Let θ be an infinitely differentiable function on $[0, +\infty[\times\mathbb{R}^n]$, such that for all $m \in \mathbb{N}$ and $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n]$; $\rho_{m,\varphi}^{\mu}(\theta)$ is finite, then the function θ lies in $\mathscr{M}([0, +\infty[\times\mathbb{R}^n])$.

ii) The family of seminorms defined on $\mathcal{M}([0, +\infty[\times \mathbb{R}^n) by$

$$\gamma_{m,\varphi}^{\mu}(\theta) = N_m^{\mu}(\theta\varphi); \quad \theta \in \mathscr{M}([0, +\infty[\times\mathbb{R}^n) \text{ and } \varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$$
(2.4)

generates the same topology as the family $\{\rho_{m,\varphi}^{\mu}; m \in \mathbb{N}, \phi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)\}$.

Proof. i) Let $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ and $m \in \mathbb{N}$. By Leibniz formula, for all $k_1, k_2 \in \mathbb{N}, \alpha \in \mathbb{N}^{\alpha}$ such that $k_1 + k_2 + |\alpha| \leq m$, we get

$$(1+r^2+|x|^2)^{k_1} (\frac{\partial}{\partial r^2})^{k_2} D_x^{\alpha} (r^{-\mu-\frac{1}{2}} \varphi(r,x) \theta(r,x)) = \sum_{j=0}^{k_2} \sum_{\beta+\gamma=\alpha} \frac{k_2!}{j!(k_2-j)!} \frac{\alpha!}{\beta!\gamma!} \times r^{-\mu-\frac{1}{2}} (\frac{\partial}{\partial r^2})^{k_2-j} D_x^{\beta} \theta(r,x) (1+r^2+|x|^2)^{k_1} r^{\mu+\frac{1}{2}} (\frac{\partial}{\partial r^2})^j D_x^{\gamma} (r^{-\mu-\frac{1}{2}} \varphi)(r,x).$$

Thus, for all $(r, x) \in [0, +\infty[\times \mathbb{R}^n]$, we have

$$\left| \left(1 + r^{2} + |x|^{2} \right)^{k_{1}} \left(\frac{\partial}{\partial r^{2}} \right)^{k_{2}} D_{x}^{\alpha} \left(r^{-\mu - \frac{1}{2}} \varphi(r, x) \theta(r, x) \right) \right|$$

$$\leq \sum_{j=0}^{k_{2}} \sum_{\beta + \gamma = \alpha} \frac{k_{2}!}{j!(k_{2} - j)!} \frac{\alpha!}{\beta! \gamma!} \rho_{k_{2} - j + |\beta|, \Phi_{j, \gamma, k_{1}}}^{\mu}(\theta)$$

$$\leq \sum_{j=0}^{k_{2}} \sum_{\beta + \gamma = \alpha} \frac{k_{2}!}{j!(k_{2} - j)!} \frac{\alpha!}{\beta! \gamma!} \rho_{m, \Phi_{j, \gamma, k_{1}}}^{\mu}(\theta).$$
(2.5)

Where, Φ_{j,γ,k_1} is the element of $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ given by

$$\Phi_{j,\gamma,k_1}(r,x) = \left(1 + r^2 + |x|^2\right)^{k_1} r^{\mu + \frac{1}{2}} \left(\frac{\partial}{\partial r^2}\right)^j D_x^{\gamma} \left(r^{-\mu - \frac{1}{2}} \varphi\right)(r,x).$$
(2.6)

The inequality (2.5) shows that for all $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$; the function $\theta\varphi$ belongs to the Hankel space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. The remainder of this proof is the same as the proof iii) implies i) in Theorem 2.4.

ii) Let $m, k_1, k_2 \in \mathbb{N}, \alpha \in \mathbb{N}^{\alpha}$ such that $k_1 + k_2 + |\alpha| \leq m$. Let $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ and $\Phi_m \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ such that

$$\rho_{m,\Phi_m}^{\mu}(\theta) = \sup\{\rho_{m,\Phi_{j,\gamma,k_1}}^{\mu}(\theta), \quad j \leqslant k_2, \quad \gamma \leqslant \alpha; \quad k_1 + k_2 + |\alpha| \leqslant m\},$$

where the functions Φ_{j,γ,k_1} are given by the relation (2.6). The inequality (2.5) involves that

$$N_m^{\mu}(\theta \phi) \leqslant 2^m \rho_{m, \Phi_m}^{\mu}(\theta), \tag{2.7}$$

which means that

$$\gamma^{\mu}_{m,\phi}(\theta) \leqslant 2^m \rho^{\mu}_{m,\Phi_m}(\theta).$$

. Let θ and ϕ be two infinitely differentiable functions on $]0, \infty[\times \mathbb{R}^n]$. By induction on $|\alpha|, \alpha \in \mathbb{N}^n$, we get

$$\varphi(r,x)D_x^{\alpha}\Theta(r,x) = \sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!} (-1)^{|\beta|} D_x^{\gamma} \big(\Theta(r,x)D_x^{\beta}\varphi(r,x)\big).$$
(2.8)

And by induction on $k \in \mathbb{N}$, we get also

$$\varphi(r,x)(\frac{\partial}{\partial r^2})^k \Theta(r,x) = \sum_{p=0}^k (-1)^p \frac{k!}{p!(k-p)!} (\frac{\partial}{\partial r^2})^{k-p} \left(\Theta(r,x)(\frac{\partial}{\partial r^2})^p \varphi(r,x)\right).$$
(2.9)

Combining the relations (2.8) and (2.9), we deduce that for all $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$

$$r^{-\mu-\frac{1}{2}}\varphi(r,x)(\frac{\partial}{\partial r^{2}})^{k}D_{x}^{\alpha}\Theta(r,x) =$$

$$\sum_{p=0}^{k}\sum_{\beta+\gamma=\alpha}(-1)^{|\beta|+p}\frac{k!}{p!(k-p)!}\frac{\alpha!}{\beta!\gamma!}(\frac{\partial}{\partial r^{2}})^{k-p}D_{x}^{\gamma}\Big(\Theta(r,x)(\frac{\partial}{\partial r^{2}})^{p}D_{x}^{\beta}r^{-\mu-\frac{1}{2}}\varphi(r,x)\Big).$$

$$(2.10)$$

204

Let $m \in \mathbb{N}$ and $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$, from the last equality, it follows that for every $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$; $k + |\alpha| \leq m$, we have

$$\begin{aligned} \left|r^{-\mu-\frac{1}{2}}\varphi(r,x)(\frac{\partial}{\partial r^{2}})^{k}D_{x}^{\alpha}\theta(r,x)\right| &\leqslant \sum_{p=0}^{k}\sum_{\beta+\gamma=\alpha}\frac{k!}{p!(k-p)!}\frac{\alpha!}{\beta!\gamma!}N_{k-p+|\alpha|}^{\mu}(\theta\Phi_{p,\beta})\\ &\leqslant \sum_{p=0}^{k}\sum_{\beta+\gamma=\alpha}\frac{k!}{p!(k-p)!}\frac{\alpha!}{\beta!\gamma!}N_{m}^{\mu}(\theta\Phi_{p,\beta})\end{aligned}$$

where

$$\Phi_{p,\beta}(r,x) = r^{\mu+\frac{1}{2}} \left(\frac{\partial}{\partial r^2}\right)^p D_x^\beta r^{-\mu-\frac{1}{2}} \varphi(r,x) \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n).$$

Now, let Φ_m be an element of $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$, such that

$$\sup\{N_m^{\mu}(\Theta\Phi_{p,\beta}), \ p+|\beta| \leq m\} = N_m^{\mu}(\Theta\Phi_m).$$

Then,

$$\rho_{m,\phi}^{\mu}(\theta) \leqslant 2^{m} \gamma_{m,\Phi_{m}}(\theta)$$

The proof of the proposition is complete.

Let $\mathscr{C}^{\infty}([0, +\infty[\times\mathbb{R}^n)$ be the space of infinitely differential functions on $[0, +\infty[\times\mathbb{R}^n \text{ equipped with the family of seminorms } {P_{m,l}; (m,l) \in \mathbb{N}^2}$ defined by

$$P_{m,l}(f) = \sup_{\substack{r^2 + |x|^2 \leqslant l^2 \\ k + |\alpha| \leqslant m}} \left| \left(\frac{\partial}{\partial r}\right)^k D_x^{\alpha} f(r, x) \right|$$

and the distance

$$d(f,g) = \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \frac{1}{2^{m+l}} \frac{P_{m,l}(f-g)}{1 + P_{m,l}(f-g)}$$

Then, we have the following continuous embedding

Lemma 2.6. $\mathscr{M}([0,+\infty[\times\mathbb{R}^n)\hookrightarrow\mathscr{C}^{\infty}([0,+\infty[\times\mathbb{R}^n).$

Proof. Let $\psi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$; $\psi(r,x) = r^{\mu+\frac{1}{2}}e^{-r^2-|x|^2}$. Let $m \in \mathbb{N}$. From the relation (2.10), for every $\theta \in \mathcal{M}([0, +\infty[\times\mathbb{R}^n), (k, \alpha) \in \mathbb{N} \times \mathbb{N}^n, k + |\alpha| \leq m$, we have

$$(\frac{\partial}{\partial r^2})^k D_x^{\alpha} \theta(r,x) = e^{r^2 + |x|^2}$$

$$\sum_{p=0}^k \sum_{\beta+\gamma=\alpha} (-1)^{|\beta|+p} \frac{k!}{p!(k-p)!} \frac{\alpha!}{\beta!\gamma!} (\frac{\partial}{\partial r^2})^{k-p} D_x^{\gamma} \Big(\theta(r,x) (\frac{\partial}{\partial r^2})^p D_x^{\beta} r^{-\mu-\frac{1}{2}} \psi(r,x) \Big).$$

However, for all $k \in \mathbb{N}$, there exist k + 1 real polynomials, Q_j , $0 \leq j \leq k$, such that

$$\left(\frac{\partial}{\partial r}\right)^k = \sum_{j=0}^k Q_j(r) \left(\frac{\partial}{\partial r^2}\right)^j$$

Unauthenticated Download Date | 2/28/18 7:43 AM

with $degree(Q_j) \leq j$. Hence,

$$\begin{split} &(\frac{\partial}{\partial r^2})^k D_x^{\alpha} \Theta(r,x) = e^{r^2 + |x|^2} \sum_{p=0}^k \sum_{\beta+\gamma=\alpha} (-1)^{|\beta|+p} \frac{k!}{p!(k-p)!} \frac{\alpha!}{\beta!\gamma!} \\ &\times \Big\{ \sum_{j=0}^{k-p} \mathcal{Q}_j(r) (\frac{\partial}{\partial r^2})^j D_x^{\gamma} \Big(\Theta(r,x) (\sum_{i=0}^p \mathcal{Q}_i(r) (\frac{\partial}{\partial r^2})^i D_x^{\beta} r^{-\mu-\frac{1}{2}} \psi(r,x)) \Big) \Big\} = \\ &e^{r^2 + |x|^2} \sum_{p=0}^k \sum_{\beta+\gamma=\alpha} (-1)^{|\beta|+p} \frac{k!}{p!(k-p)!} \frac{\alpha!}{\beta!\gamma!} \sum_{j=0}^{k-p} \mathcal{Q}_j(r) (\frac{\partial}{\partial r^2})^j D_x^{\gamma} \Big(r^{-\mu-\frac{1}{2}} \psi_{p,\beta}(r,x) \Big) \end{split}$$

with

$$\Psi_{p,\beta}(r,x) = r^{\mu+\frac{1}{2}} \left(\sum_{i=0}^{p} \mathcal{Q}_i(r) \left(\frac{\partial}{\partial r^2} \right)^i D_x^{\beta} r^{-\mu-\frac{1}{2}} \Psi(r,x) \right).$$

Now, for all $0 \leq j \leq k - p$, there exists $C_j > 0$, such that

$$|Q_j(r)| \leq C_j(1+r^2)^j \leq C_j(1+r^2+|x|^2)^j$$

and consequently

$$\begin{split} & \left| \left(\frac{\partial}{\partial r^2}\right)^k D_x^{\alpha} \Theta(r, x) \right| \leqslant e^{r^2 + |x|^2} \times \\ & \sum_{p=0}^k \sum_{\beta+\gamma=\alpha} \frac{k!}{p!(k-p)!} \frac{\alpha!}{\beta! \gamma!} \sum_{j=0}^{k-p} C_j (1+r^2+|x|^2)^j \left| \left(\frac{\partial}{\partial r^2}\right)^j D_x^{\gamma} \left(r^{-\mu-\frac{1}{2}} \Psi_{p,\beta}(r, x)\right) \right| \\ & \leqslant e^{r^2+|x|^2} \sum_{p=0}^k \sum_{\beta+\gamma=\alpha} \frac{k!}{p!(k-p)!} \frac{\alpha!}{\beta! \gamma!} \left(\sum_{j=0}^{k-p} C_j\right) N_m^{\mu}(\Theta \Psi_{p,\beta}). \end{split}$$

Let $\psi_m \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ such that

$$\sup\{N_m^{\mu}(\Theta\psi_{p,\beta}), \ p+|\beta| \leq m\} = N_m^{\mu}(\Theta\psi_m).$$

Then, for all $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$ such that $k + |\alpha| \leq m$

$$\left|\left(\frac{\partial}{\partial r^2}\right)^k D_x^{\alpha} \theta(r,x)\right| \leq C_m 2^m e^{r^2 + |x|^2} N_m^{\mu}(\theta \psi_m),$$

where, $C_m = \sum_{j=0}^m C_j$. This equality shows that for all $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$

$$P_{l,m}(\theta) \leq 2^m C_m e^{l^2} \gamma^{\mu}_{m,\Psi_m}(\theta).$$

Q.E.D.

Proposition 2.7. The space $\mathscr{M}([0, +\infty[\times \mathbb{R}^n)$ is Hausdorff and complete.

Proof. • Let $\theta \in \mathscr{M}([0, +\infty[\times\mathbb{R}^n) \text{ such that } \theta \neq 0$. Let $\varphi(r, x) = r^{\mu + \frac{1}{2}} e^{-r^2 - |x|^2}$, then φ belongs to the Hankel space and we have

$$\rho_{0,\varphi}^{\mu}(\theta) = \sup_{(r,s)\in[0,\infty[\times\mathbb{R}^n} e^{-r^2 - |x|^2} |\theta(r,x)| > 0,$$

this shows that the space $\mathscr{M}([0, +\infty[\times \mathbb{R}^n)$ is separated

• Let $(\theta_k)_k$ be a Cauchy sequence in $\mathscr{M}([0, +\infty[\times\mathbb{R}^n]))$. This means that for all $m \in \mathbb{N}$, $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n])$,

$$\rho^{\mu}_{m,\varphi}(\theta_k - \theta_{k'}) \xrightarrow[k,k' \to \infty]{} 0$$

From Lemma 2.6 $(\theta_k)_k$ is a Cauchy's sequence in $\mathscr{C}^{\infty}([0, +\infty[\times\mathbb{R}^n)$ which is complete. Consequently, there exists $\theta \in \mathscr{C}^{\infty}([0, +\infty[\times\mathbb{R}^n)$ such that for all $m, l \in \mathbb{N}$

$$P_{m,l}(\mathbf{\theta}_k - \mathbf{\theta}) \xrightarrow[k \to \infty]{} 0.$$

Let $\varepsilon > 0$, for all $m \in \mathbb{N}$, $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ there exists $k_0 = k_0(m, \varphi, \varepsilon) \in \mathbb{N}$ such that

$$\forall k,k' > k_0; \quad \rho^{\mu}_{m,\phi}(\theta_k - \theta_{k'}) < \varepsilon,$$

this means that for all $(r,x) \in [0,\infty[\times \mathbb{R}^n \text{ and } (p,\alpha) \in \mathbb{N} \times \mathbb{N}^n; p+|\alpha| \leq m;$

$$\left|r^{-\mu-\frac{1}{2}}\varphi(r,x)(\frac{\partial}{\partial r^2})^p D_x^{\alpha}(\theta_k-\theta_{k'})(r,x)\right|<\varepsilon.$$

and consequently

$$\left|r^{-\mu-\frac{1}{2}}\varphi(r,x)(\frac{\partial}{\partial r^2})^p D_x^{\alpha}(\theta_k-\theta)(r,x)\right|<\varepsilon.$$

This inequality shows that the function θ belongs to $\mathscr{M}([0,+\infty[\times\mathbb{R}^n)])$ and that for all $(m, \varphi) \in \mathbb{N} \times \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$,

$$\rho_{m,\varphi}^{\mu}(\theta_k-\theta) \xrightarrow[k\to\infty]{} 0.$$

Q.E.D.

In the following, we shall study the continuity of some operators defined on $\mathscr{M}([0,+\infty[\times\mathbb{R}^n).$

Proposition 2.8.

i) The bilinear map

$$\begin{split} \mathscr{M}([0,+\infty[\times\mathbb{R}^n)\times\mathscr{M}([0,+\infty[\times\mathbb{R}^n)\to\mathscr{M}([0,+\infty[\times\mathbb{R}^n)\\(\theta,\vartheta)\mapsto\theta\vartheta) \end{split}$$

is separately continuous.

ii) For every $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$, the map $\theta \mapsto (\frac{\partial}{\partial r^2})^k D_x^{\alpha} \theta(r, x)$ is continuous from $\mathscr{M}([0, +\infty[\times\mathbb{R}^n) \text{ into itself.}$

Proof.

i) Fix $\theta \in \mathscr{M}([0, +\infty[\times\mathbb{R}^n))$. Let $\vartheta \in \mathscr{M}([0, +\infty[\times\mathbb{R}^n)), \varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n))$ and let $k, m \in \mathbb{N}, \alpha \in \mathbb{N}^n$ such that $k + |\alpha| \leq m$.

It is clear that $\theta \vartheta$ is an infinitely differentiable function on $]0, \infty[\times \mathbb{R}^n]$ and by applying Leibniz formula we get for all $(r, x) \in [0, \infty] \times \mathbb{R}^n$,

$$\begin{split} r^{-\mu-\frac{1}{2}} \varphi(r,x) (\frac{\partial}{\partial r^2})^k D_x^{\alpha}(\theta \vartheta)(r,x) &= \sum_{j=0}^k \sum_{\beta+\gamma=\alpha} \frac{k!}{j!(k-j)!} \frac{\alpha!}{\beta!\gamma!} r^{-\mu-\frac{1}{2}} \varphi(r,x) \\ &\times (\frac{\partial}{\partial r^2})^j D_x^{\beta} \theta(r,x) (\frac{\partial}{\partial r^2})^{k-j} D_x^{\gamma} \vartheta(r,x). \end{split}$$

From Theorem 2.4, there exist $C_{j,\beta} > 0$ and $m_{j,\beta} \in \mathbb{N}$ such that

$$\left| \left(\frac{\partial}{\partial r^2} \right)^j D_x^{\beta} \theta(r, x) \right| \leqslant C_{j,\beta} (1 + r^2 + |x|^2)^{m_{j,\beta}}.$$

Thus, we have

$$\begin{split} & \left| r^{-\mu-\frac{1}{2}} \varphi(r,x) (\frac{\partial}{\partial r^2})^k D_x^{\alpha}(\vartheta \vartheta)(r,x) \right| \\ & \leqslant \sum_{j=0}^k \sum_{\beta+\gamma=\alpha} \frac{k!}{j!(k-j)!} \frac{\alpha!}{\beta! \gamma!} \left| r^{-\mu-\frac{1}{2}} \Phi_{j,\beta}(r,x) (\frac{\partial}{\partial r^2})^{k-j} D_x^{\gamma} \vartheta(r,x) \right| \\ & \leqslant \sum_{j=0}^k \sum_{\beta+\gamma=\alpha} \frac{k!}{j!(k-j)!} \frac{\alpha!}{\beta! \gamma!} \rho_{k-j+|\gamma|,\Phi_{j,\beta}}^{\mu}(\vartheta) \\ & \leqslant \sum_{j=0}^k \sum_{\beta+\gamma=\alpha} \frac{k!}{j!(k-j)!} \frac{\alpha!}{\beta! \gamma!} \rho_{m,\Phi_{j,\beta}}^{\mu}(\vartheta), \end{split}$$

where $\Phi_{j,\beta}$ is the element of $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ given by

$$\Phi_{j,\beta}(r,x) = C_{j,\beta}(1+r^2+|x|^2)^{m_{j,\beta}}\varphi(r,x).$$

Let $\Phi_m \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ such that

$$\rho_{m,\Phi_m}^{\mu}(\vartheta) = \sup\{\rho_{m,\Phi_{j,\beta}}^{\mu}(\vartheta), \ j+|\alpha| \leq m\}.$$

Then, the last inequality involves that

$$\rho^{\mu}_{m,\phi}(\theta\vartheta) \leqslant 2^{m} \rho^{\mu}_{m,\Phi_{m}}(\vartheta).$$

ii) Let $m \in \mathbb{N}$, $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$. Then for all $\theta \in \mathscr{M}([0, +\infty[\times \mathbb{R}^n) \text{ and } \varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n))$, we have

$$\rho_{m,\phi}^{\mu}((\frac{\partial}{\partial r^2})^k D_x^{\alpha} \theta) \leqslant \rho_{m+k+|\alpha|,\phi}^{\mu}(\theta).$$

Which completes the proof.

Q.E.D.

Proposition 2.9. The bilinear mapping

$$\begin{split} \mathscr{M}([0,+\infty[\times\mathbb{R}^n)\times\mathbb{H}_{\mu}(]0,+\infty[\times\mathbb{R}^n)\to\mathbb{H}_{\mu}(]0,+\infty[\times\mathbb{R}^n) \\ (\theta,\phi)\mapsto\theta\phi \end{split}$$

is separately continuous.

Proof. • From Definition 2.1, it follows that for every $\theta \in \mathscr{M}([0, +\infty[\times\mathbb{R}^n])$ the mapping $\varphi \mapsto \theta\varphi$ is continuous from $\mathbb{H}_u([0, +\infty[\times\mathbb{R}^n])$ into itself.

• Let $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. The continuity of the mapping $\theta \mapsto \theta \varphi$ from $\mathscr{M}([0, +\infty[\times\mathbb{R}^n)$ into $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ follows from the relation (2.7).

Proposition 2.10. The mapping $\varphi \mapsto r^{-\mu-\frac{1}{2}}\varphi$ is continuous from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ into $\mathscr{M}([0, +\infty[\times\mathbb{R}^n).$

Proof. Let φ , $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ and $m, k \in \mathbb{N}$, $\alpha \in \mathbb{N}^n$ such that $k + |\alpha| \leq m$, we have for all $(r, x) \in]0, \infty[\times \mathbb{R}^n$

$$\left|r^{-\mu-\frac{1}{2}}\varphi(r,x)(\frac{\partial}{\partial r^2})^k D_x^{\alpha}(r^{-\mu-\frac{1}{2}}\varphi)(r,x)\right| \leqslant N_0^{\mu}(\varphi)N_m^{\mu}(\varphi),$$

which implies that

$$\rho_{m,\phi}^{\mu}(r^{-\mu-\frac{1}{2}}\phi) \leqslant N_0^{\mu}(\phi)N_m^{\mu}(\phi).$$
Q.E.D

3 The convolution space of the dual $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$.

Let $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ be the topological dual of the Hankel space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. To give the usual characterization of the dual $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ we use the fact that for all $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$, the family

$$\mathcal{V}_{\mu}(\mathbf{\varphi}) = \{ V_{m,\varepsilon,\mu}(\mathbf{\varphi}), \ m \in \mathbb{N}, \varepsilon > 0 \}$$

is a basis of neighborhoods of φ in $(\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n), d_{\mu})$. Where

$$V_{m,\varepsilon,\mu}(\mathbf{\varphi}) = \{ \mathbf{\psi} \in \mathbb{H}_{\mu}(]\mathbf{0}, +\infty[\times\mathbb{R}^n); N_m^{\mu}(\mathbf{\varphi} - \mathbf{\psi}) < \varepsilon \}.$$

Thus, we have

Proposition 3.1. A linear mapping

$$T: \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n) \longrightarrow \mathbb{C}$$

belongs to $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ if and only if there exist a positive constant *C* and an integer *m* such that for all $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$;

$$| < T, \varphi > | \le CN_m^{\mu}(\varphi). \tag{3.1}$$

The main result of this section consists to define a subspace of the dual $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ which permits to define and study the convolution product on $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. For this we shall define the Hankel translation operators, the convolution product and the Fourier-Hankel transform and we recall some properties, see [6].

Definition 3.2. 1. For every $(r,x) \in [0, +\infty[\times\mathbb{R}^n]$; the Hankel translation operator $\tau^{\mu}_{(r,x)}$ is defined on $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n]$ by

$$\tau^{\mu}_{(r,x)}(\phi)(s,y) = \begin{cases} \int_{|r-s|}^{r+s} \phi(t,x+y) \mathscr{W}_{\mu}(r,s,t) \frac{t^{\mu+\frac{1}{2}}}{2^{\mu}\Gamma(\mu+1)} dt; \ \mu > -\frac{1}{2} \\ \\ \sqrt{\frac{2}{\pi}} \Big[\frac{\phi(r+s,x+y) + \phi(r-s,x+y)}{2} \Big]; \qquad \mu = -\frac{1}{2}. \end{cases}$$

2. The convolution product of $\varphi, \psi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$, is given by

$$\varphi * \psi(r,x) = \int_0^\infty \int_{\mathbb{R}^n} \tau^{\mu}_{(r,-x)}(\check{\varphi})(s,y)\psi(s,y)\frac{dsdy}{(2\pi)^{n/2}}.$$
(3.2)

Where \mathcal{W}_{μ} *is the Hankel kernel given by*

$$\begin{cases} \frac{(rs)^{-\mu+\frac{1}{2}}\Gamma(\mu+1)\left[(r+s)^2 - t^2\right]^{\mu-\frac{1}{2}}\left[t^2 - (r-s)^2\right]^{\mu-\frac{1}{2}}}{2^{2\mu-1}\sqrt{\pi}\Gamma(\mu+\frac{1}{2})t^{2^{\mu}}}; \ |r-s| < t < r+s \\ 0; \qquad \qquad otherwise, \end{cases}$$

and $\check{\mathbf{\phi}}(s, y) = \mathbf{\phi}(s, -y)$.

To define the Fourier Hankel transform, we introduce the function $\varphi^{\mu}_{\lambda_0,\lambda}$, $(\lambda_0,\lambda) \in]0, \infty[\times \mathbb{R}^n$ to be

$$\varphi^{\mu}_{\lambda_{0},\lambda}(r,x) = \mathscr{J}_{\mu}(r\lambda_{0})e^{-i\langle\lambda|x\rangle}.$$
(3.3)

Where

• \mathscr{J}_{μ} is the modified Bessel function defined by

$$\mathscr{J}_{\mu}(z) = \sqrt{z} J_{\mu}(z).$$

And J_{μ} is the Bessel function of the first kind and index μ (see [4, 3, 5, 9]).

• $\langle . | . \rangle$ is the usual inner product on \mathbb{R}^n , $\langle \lambda | x \rangle = \sum_{j=1}^n \lambda_j x_j$.

Definition 3.3. The Fourier-Hankel transform \mathscr{H}_{μ} is defined on $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ by, for all $(\lambda_0, \lambda) \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$;

$$\mathscr{H}_{\mu}(\phi)(\lambda_{0},\lambda) = \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \phi(r,x) \phi_{\lambda_{0},\lambda}^{\mu}(r,x) \frac{drdx}{(2\pi)^{\frac{n}{2}}}$$

It was shown in [6] that

ℋ_μ is a topological isomorphism from ℍ_μ(]0,+∞[×ℝⁿ) onto itself and that the inverse mapping is given by

$$\mathscr{H}_{\mu}^{-1}(f)(r,x) = \int_{0}^{\infty} \int_{\mathbb{R}^{n}} f(\lambda_{0},\lambda) \overline{\varphi_{\lambda_{0},\lambda}^{\mu}(r,x)} \frac{d\lambda_{0}d\lambda}{(2\pi)^{\frac{n}{2}}}.$$

• For every $\Psi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n), (r, x) \in]0, \infty[\times\mathbb{R}^n$ the function $\tau^{\mu}_{(r, x)}(\Psi)$ belongs to $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and we have

$$\mathscr{H}_{\mu}(\tau^{\mu}_{(r,x)}(\Psi))(\lambda_{0},\lambda) = \lambda_{0}^{-\mu-\frac{1}{2}} \overline{\varphi^{\mu}_{\lambda_{0},\lambda}(r,x)} \mathscr{H}_{\mu}(\Psi)(\lambda_{0},\lambda)$$
(3.4)

For every φ, ψ ∈ ℍ_μ(]0, +∞[×ℝⁿ), the function φ ∗ ψ belongs to the space ℍ_μ(]0, +∞[×ℝⁿ) and we have

$$\mathscr{H}_{\!\!\mu}(\phi\ast\psi)(\lambda_0,\lambda)=\lambda_0^{-\mu-\frac{1}{2}}\mathscr{H}_{\!\!\mu}(\phi)(\lambda_0,\lambda)\mathscr{H}_{\!\!\mu}(\psi)(\lambda_0,\lambda),$$

The precedent result allows us to define the Fourier-Hankel transform \mathscr{H}_{μ} on $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ by

$$< \mathscr{H}_{\mu}(T), \varphi > = < T, \mathscr{H}_{\mu}(\varphi) >, \ \varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$$

Then, \mathscr{H}_{μ} becomes a topological isomorphism from $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ onto itself.

Next, we establish other properties for the translation operator and the convolution product that we use later.

Proposition 3.4. For every $(r,x) \in]0, \infty[\times \mathbb{R}^n]$, the Hankel translation operator $\tau^{\mu}_{(r,x)}$ is continuous from $\mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n]$ into itself. Moreover, for all $m \in \mathbb{N}$, there exist $m_1, m_2 \in \mathbb{N}$ and C > 0 such that

$$\forall \psi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^{n}), \quad N_{m}^{\mu}\left(\tau_{(r,x)}^{\mu}(\psi)\right) \leqslant C(1+r^{2}+|x|^{2})^{m_{1}}N_{m_{2}}^{\mu}(\psi).$$
(3.5)

Proof. From the relation (3.4), we have, for every $\psi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$

$$\tau^{\mu}_{(r,x)}(\Psi)(s,y) = \mathscr{H}_{\mu}^{-1}\left(\lambda_{0}^{-\mu-\frac{1}{2}}\overline{\varphi^{\mu}_{\lambda_{0},\lambda}(r,x)}}\mathscr{H}_{\mu}(\Psi)\right)(s,y).$$

Since the transform \mathscr{H}_{μ}^{-1} is continuous from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ onto itself, for every $m \in \mathbb{N}$, there exist $m' \in \mathbb{N}$ and C > 0 such that

$$\begin{split} N_m^{\mu}\left(\tau_{(r,x)}^{\mu}(\boldsymbol{\psi})\right) &= N_m^{\mu}\left(\mathscr{H}_{\mu}^{-1}\left(\lambda_0^{-\mu-\frac{1}{2}}\overline{\varphi_{\lambda_0,\lambda}^{\mu}(r,x)}\mathscr{H}_{\mu}(\boldsymbol{\psi})\right)\right)\\ &\leqslant CN_{m'}^{\mu}\left(\lambda_0^{-\mu-\frac{1}{2}}\overline{\varphi_{\lambda_0,\lambda}^{\mu}(r,x)}\mathscr{H}_{\mu}(\boldsymbol{\psi})\right). \end{split}$$

Let

$$\begin{split} f(\lambda_0,\lambda) &= \lambda_0^{-\mu-\frac{1}{2}} \overline{\phi_{\lambda_0,\lambda}^{\mu}(r,x)} \mathscr{H}_{\mu}(\Psi)(\lambda_0,\lambda) \\ &= \frac{r^{\mu+1/2}}{2^{\mu} \Gamma(\mu+1)} j_{\mu}(\lambda_0 r) e^{i\langle\lambda|x\rangle} \mathscr{H}_{\mu}(\Psi)(\lambda_0,\lambda), \end{split}$$

where j_{μ} is the modified Bessel function defined by

$$j_{\mu}(s) = 2^{\mu} \Gamma(\mu+1) \frac{J_{\mu}(s)}{s^{\mu}}$$

=
$$\begin{cases} \frac{2\Gamma(\mu+1)}{\sqrt{\pi} \Gamma(\mu+\frac{1}{2})} \int_{0}^{1} (1-t^{2})^{\mu-\frac{1}{2}} \cos(st) dt; & \mu > -\frac{1}{2} \\ \cos(s); & \mu = -\frac{1}{2} \end{cases}$$

- ()

It is clear that for every $k \in \mathbb{N}$,

$$\left(\frac{\partial}{\partial\lambda_0^2}\right)^k (j_\mu(\lambda_0 r)) = \frac{(-r^2)^k}{2^k \Gamma(\mu+k+1)} j_{\mu+k}(\lambda_0 r).$$
(3.6)

Thus, from Leibniz formula, we have

$$\begin{pmatrix} \frac{\partial}{\partial \lambda_0^2} \end{pmatrix}^k \left(\lambda_0^{-\mu-1/2} f(\lambda_0, \lambda) \right) = \\ \frac{r^{\mu+1/2}}{2^{\mu} \Gamma(\mu+1)} e^{i \langle \lambda | x \rangle} \sum_{l=0}^k C_k^l \left(\frac{\partial}{\partial \lambda_0^2} \right)^l \left(j_{\mu}(\lambda_0 r) \right) \left(\frac{\partial}{\partial \lambda_0^2} \right)^{k-l} \left(\lambda_0^{-\mu-1/2} \mathscr{H}_{\mu}(\Psi)(\lambda_0, \lambda) \right),$$

and from the relation (3.6), for every $\alpha \in \mathbb{N}^n$

$$\begin{split} D_{\lambda}^{\alpha} & \left(\frac{\partial}{\partial \lambda_{0}^{2}}\right)^{k} \left(\lambda_{0}^{-\mu-1/2} f(\lambda_{0},\lambda)\right) = \frac{r^{\mu+1/2}}{2^{\mu} \Gamma(\mu+1)} \times \\ \sum_{l=0}^{k} C_{k}^{l}(-1)^{l} \frac{r^{2l}}{2^{l} \Gamma(\mu+l+1)} j_{\mu+l}(\lambda_{0}r) D_{\lambda}^{\alpha} \left(e^{i\langle\lambda|x\rangle} \left(\frac{\partial}{\partial \lambda_{0}^{2}}\right)^{k-l} \left(\lambda_{0}^{-\mu-1/2} \mathscr{H}_{\mu}(\Psi)(\lambda_{0},\lambda)\right)\right) \\ &= \frac{r^{\mu+1/2}}{2^{\mu} \Gamma(\mu+1)} \sum_{l=0}^{k} C_{k}^{l}(-1)^{l} \frac{r^{2l}}{2^{l} \Gamma(\mu+l+1)} j_{\mu+l}(\lambda_{0}r) \times \\ & \sum_{\beta \leqslant \alpha} \frac{\alpha!}{\beta!(\alpha-\beta)!} (ix)^{\beta} e^{i\langle\lambda|x\rangle} D_{\lambda}^{\alpha-\beta} \left(\left(\frac{\partial}{\partial \lambda_{0}^{2}}\right)^{k-l} \left(\lambda_{0}^{-\mu-1/2} \mathscr{H}_{\mu}(\Psi)(\lambda_{0},\lambda)\right)\right). \end{split}$$

Let $k_1, k_2 \in \mathbb{N}$, $\alpha \in \mathbb{N}^n$ such that $k_1 + k_2 + |\alpha| \leq m'$. For every $(\lambda_0, \lambda) \in [0, +\infty[\times \mathbb{R}^n, k_2])$

$$\left| (1 + \lambda_0^2 + |\lambda|^2)^{k_1} D_{\lambda}^{\alpha} \left(\frac{\partial}{\partial \lambda_0^2} \right)^{k_2} \left(\lambda_0^{-\mu - 1/2} f(\lambda_0, \lambda) \right) \right|$$

 $\leq C_1 2^{k_2 + |\alpha|} (1 + r^2 + |x|^2)^{2m' + [\mu + 1/2] + 1} N_{m'}^{\mu} (\mathscr{H}_{\mu}(\Psi))$
 $\leq C_2 (1 + r^2 + |x|^2)^{2m' + [\mu + 1/2] + 1} N_{m''}^{\mu}(\Psi).$

Which completes the proof.

Proposition 3.5. For every $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$, the function defined by

$$T * \mathbf{\varphi}(r, x) = \langle T, \tau^{\mu}_{(r, -x)}(\breve{\mathbf{\varphi}}) \rangle$$

is continuous on $[0,\infty] \times \mathbb{R}^n$ and slowly increasing.

Proof. Let $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. From Proposition 3.4 and for every $(r,x) \in [0,\infty[\times\mathbb{R}^n]$, the function $\tau^{\mu}_{(r,x)}(\check{\varphi})$ belongs to the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n]$. Hence, the convolution product $T * \varphi$ is well defined. Let $((r_k, x_k))_k \subset [0, \infty[\times\mathbb{R}^n]$ such that $\lim_{k\to\infty}(r_k, x_k) = (r, x)$.

Let us prove that the sequence $\left(\tau^{\mu}_{(r_k,-x_k)}(\check{\varphi})\right)_k$ converges to $\tau^{\mu}_{(r,-x)}(\check{\varphi})$ in $\mathbb{H}_{\mu}(]0,+\infty[\times\mathbb{R}^n)$.

Since the Fourier-Hankel transform is a topological isomorphism from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ onto itself, it is enough to show that

$$\lim_{k\to\infty}\mathscr{H}_{\mu}\left(\tau^{\mu}_{(r_k,-x_k)}(\check{\varphi})\right)=\mathscr{H}_{\mu}\left(\tau^{\mu}_{(r,-x)}(\check{\varphi})\right)$$

in $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$.

By relation (3.4), for every $(\lambda_0, \lambda) \in [0, \infty[\times \mathbb{R}^n, \infty[\times \mathbb{R}^n]])$

$$\begin{aligned} \mathscr{H}_{\mu}\left(\tau^{\mu}_{(r_{k},-x_{k})}(\check{\phi})\right)(\lambda_{0},\lambda) &= \lambda_{0}^{-\mu-\frac{1}{2}}\phi^{\mu}_{\lambda_{0},\lambda}(r_{k},x_{k})\mathscr{H}_{\mu}(\check{\phi})(\lambda_{0},\lambda) \\ &= \lambda_{0}^{-\mu-\frac{1}{2}}\mathscr{J}_{\mu}(\lambda_{0}r_{k})e^{-i\langle\lambda,x_{k}\rangle}\mathscr{H}_{\mu}(\check{\phi})(\lambda_{0},\lambda) \\ &= \frac{r_{k}^{\mu+1/2}}{2^{\mu}\Gamma(\mu+1)}j_{\mu}(r_{k}\lambda_{0})e^{-i\langle\lambda,x_{k}\rangle}\mathscr{H}_{\mu}(\check{\phi})(\lambda_{0},\lambda) \end{aligned}$$

Thus, for every $(\lambda_0, \lambda) \in [0, \infty[\times \mathbb{R}^n, \infty[\times \mathbb{R}^n]]$

$$\begin{aligned} \mathscr{H}_{\mu} \left(\tau^{\mu}_{(r_{k},-x_{k})}(\breve{\phi}) - \tau^{\mu}_{(r,-x)}(\breve{\phi}) \right) (\lambda_{0},\lambda) &= \\ \left(r^{\mu+1/2}_{k} j_{\mu}(r_{k}\lambda_{0}) e^{-i\langle\lambda,x_{k}\rangle} - r^{\mu+1/2} j_{\mu}(r\lambda_{0}) e^{-i\langle\lambda,x\rangle} \right) \times \frac{\mathscr{H}_{\mu}(\breve{\phi})(\lambda_{0},\lambda)}{2^{\mu}\Gamma(\mu+1)}. \end{aligned}$$

By standard computation and using the relation (3.6), we deduce that for every $(k_1, k_2, \alpha) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}^n$,

$$\lim_{k\to\infty}\sup_{(\lambda_0,\lambda)\in[0,\infty[\times\mathbb{R}^n}\left(1+\lambda_0^2+|\lambda|^2\right)^{k_1}\left|(\frac{\partial}{\partial\lambda_0^2})^{k_2}D_x^{\alpha}\left(\mathscr{H}_{\mu}\left(\tau^{\mu}_{(r_k,-x_k)}(\check{\phi})-\tau^{\mu}_{(r,-x)}(\check{\phi})\right)(\lambda_0,\lambda)\right)\right|=0,$$

which means that $\left(\tau^{\mu}_{(r_k,-x_k)}(\check{\phi})\right)$ converges to $\left(\tau^{\mu}_{(r,-x)}(\check{\phi})\right)$ in $\mathbb{H}_{\mu}(]0,+\infty[\times\mathbb{R}^n)$. Since $T \in \mathbb{H}'_{\mu}(]0,+\infty[\times\mathbb{R}^n)$, then

$$\lim_{k\to\infty} \langle T, \tau^{\mu}_{(r_k, -x_k)}(\breve{\varphi}) = \langle T, \tau^{\mu}_{(r, -x)}(\breve{\varphi}),$$

and consequently, the function $T * \varphi$ is continuous on $[0, \infty] \times \mathbb{R}^n$.

Moreover, from relation (3.1), there exist $m \in \mathbb{N}$ and $C_1 > 0$ such that for every $(r, x) \in [0, \infty] \times \mathbb{R}^n$,

$$|T * \varphi(r, x)| \leq C_1 N_m^{\mu}(\tau_{(r, -x)}^{\mu}(\breve{\phi}))$$

and by relation (3.5)

$$|T * \varphi(r,x)| \leq C_2 (1 + r^2 + |x|^2)^{m_1} N^{\mu}_{m_2}(\varphi),$$

so the function $T * \varphi$ is slowly increasing and the proof is complete.

C. Baccar

Lemma 3.6. Let $\varphi, \psi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$. Then, for every X > 0, the sequence $(\theta_{X,N})_N, N = (N_0, ..., N_n) \in \mathbb{N}^{n+1}$, defined by

converges in $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ to the function

$$\theta_X(s,y) = \int_0^X \int_{[-X,X]^n} \tau^{\mu}_{(r,x)}(\varphi)(s,y) \Psi(r,x) dr dx.$$

Proof. From Proposition 3.4 the function $\theta_{X,N}$ belongs to the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. Now, for every $(s, y) \in]0, \infty[\times\mathbb{R}^n]$, we have

$$\begin{aligned} \theta_{X,N}(s,y) - \theta_X(s,y) &= \sum_{k_0=0}^{N_0-1} \dots \sum_{k_n=0}^{N_n-1} \int_{\frac{k_0 X}{N_0}}^{\frac{k_0+1}{N_0} X} \dots \int_{-X+\frac{k_n X}{N_n}}^{-X+\frac{k_n+1}{N_n} X} \\ & \left(\tau_{\frac{k_0 X}{N_0},\dots,-X+\frac{2k_n}{N_n} X}(\varphi)(s,y) \Psi\left(\frac{k_0 X}{N_0},\dots,-X+\frac{2k_n}{N_n} X\right) - \tau_{(r,x)}(\varphi)(s,y) \Psi(r,x)\right) dr dx. \end{aligned}$$

Let $(k_1, k_2, \alpha) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}^n$, then

$$\begin{split} &(1+s^2+|y|^2)^{k_1}(\frac{\partial}{\partial s^2})D_y^{\alpha}\left(s^{-\mu-\frac{1}{2}}(\theta_{X,N}-\theta_X)(s,y)\right) \\ &=\sum_{k_0=0}^{N_0-1}\dots\sum_{k_n=0}^{N_n-1}\int_{\frac{k_0X}{N_0}}^{\frac{k_0+1}{N_0}X}\dots\int_{-X+\frac{k_nX}{N_n}}^{-X+\frac{k_n+1}{N_n}X}(1+s^2+|y|^2)^{k_1}(\frac{\partial}{\partial s^2})D_y^{\alpha} \\ &\left(s^{-\mu-\frac{1}{2}}\left(\tau_{\frac{k_0X}{N_0},\dots,-X+\frac{2k_n}{N_n}X}(\varphi)(s,y)\Psi\left(\frac{k_0X}{N_0},\dots,-X+\frac{2k_n}{N_n}X\right)-\tau_{(r,x)}(\varphi)(s,y)\Psi(r,x)\right)\right)drdx \\ &=\sum_{k_0=0}^{N_0-1}\dots\sum_{k_n=0}^{N_n-1}\int_{\frac{k_0X}{N_0}}^{\frac{k_0+1}{N_0}X}\dots\int_{-X+\frac{k_n+1}{N_n}}^{-X+\frac{k_n+1}{N_n}X}\left(F(\frac{k_0X}{N_0},\dots,-X+\frac{2k_n}{N_n}X)-F(r,x,s,y)\right)drdx \end{split}$$

where $F: ([0, +\infty[\times \mathbb{R}^n)^2 \to \mathbb{C}$ is defined by

$$F(r,x,s,y) = (1+s^2+|y|^2)^{k_1}(\frac{\partial}{\partial s^2})D_y^{\alpha}(\tau_{(r,x)}(\phi)(s,y)\Psi(r,x)).$$

The function *F* is continuous on $([0, +\infty[\times \mathbb{R}^n)^2$. Moreover,

$$\begin{split} &(1+r^2+s^2+|x|^2+|y|^2)|F(r,x,s,y)|\\ &\leqslant (1+s^2+|y|^2)^{k_1+1}(\frac{\partial}{\partial s^2})^{k_2}D_y^{\alpha}\left(s^{-\mu-\frac{1}{2}}\tau_{(r,x)}(\phi)(s,y)\right)(1+r^2+|x|^2)|\Psi(r,x)|\\ &\leqslant (1+s^2+|y|^2)^{k_1+1}(\frac{\partial}{\partial s^2})^{k_2}D_y^{\alpha}\left(s^{-\mu-\frac{1}{2}}\tau_{(r,x)}(\phi)(s,y)\right)(1+r^2+|x|^2)^{2+[\mu+\frac{1}{2}]}|r^{-\mu-\frac{1}{2}}\Psi(r,x)|\\ &\leqslant N_{k_1+k_2+|\alpha|+1}^{\mu}\left(\tau_{(r,x)}^{\mu}(\phi)\right)(1+r^2+|x|^2)^{2+[\mu+\frac{1}{2}]}|r^{-\mu-\frac{1}{2}}\Psi(r,x)| \end{split}$$

and by Proposition 3.4, we get

$$\begin{split} &(1+r^2+s^2+|x|^2+|y|^2)|F(r,x,s,y)|\\ &\leqslant CN^{\mu}_{m_1}(\mathbf{\phi})(1+r^2+|x|^2)^{m_2+[\mu+\frac{1}{2}]}|(r^{-\mu-\frac{1}{2}}\Psi(r,x))|\\ &\leqslant CN^{\mu}_{m_1}(\mathbf{\phi})N^{\mu}_{m_2+[\mu+\frac{1}{2}]}(\Psi). \end{split}$$

The last inequality shows that

$$\lim_{r^2 + s^2 + |y|^2 + |x|^2 \to +\infty} F(r, x, s, y) = 0$$

and consequently, the function F is uniformly continuous.

Let $\varepsilon > 0$, there exists $\alpha > 0$ such that for $|r - r'| < \alpha$, $|x_j - x'_j| < \alpha$, $1 \le j \le n$; we have for every $(s, y) \in [0, +\infty[\times \mathbb{R}^n,$

$$|F(r,x,s,y)-F(r',x',s,y)|\leqslant \varepsilon.$$

So for $(N_0,...,N_n) \in (\mathbb{N}^*)^{n+1}$, such that $\frac{X}{N_0} < \alpha$, $\frac{2X}{N_j} < \alpha$, $1 \leq j \leq n$, we get for every $(s,y) \in [0,+\infty[\times \mathbb{R}^n,\infty])$

$$\begin{split} \left| (1+s^2+|y|^2)^{k_1} (\frac{\partial}{\partial s^2}) D_y^{\alpha} \left(s^{-\mu-\frac{1}{2}} (\theta_{X,N} - \theta_X)(s,y) \right) \right| \\ & \leqslant \varepsilon \sum_{k_0=0}^{N_0-1} \dots \sum_{k_n=0}^{N_n-1} \int_{\frac{k_0 X}{N_0}}^{\frac{k_0+1}{N_0} X} \dots \int_{-X+\frac{k_n X}{N_n}}^{-X+\frac{k_n X}{N_n}} dr dx_1 \dots dx_n \\ & \leqslant \varepsilon \sum_{k_0=0}^{N_0-1} \dots \sum_{k_n=0}^{N_n-1} \frac{X}{N_0} \frac{2X}{N_1} \dots \frac{2X}{N_n} = \varepsilon 2^n X^{n+1}. \end{split}$$

This proves that for every $(k_1, k_2, \alpha) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}^n$,

$$\sup_{(s,y)\in[0,+\infty[\times\mathbb{R}^n}\left|(1+s^2+|y|^2)^{k_1}(\frac{\partial}{\partial s^2})D_y^{\alpha}\left(s^{-\mu-\frac{1}{2}}(\theta_{X,N}-\theta_X)(s,y)\right)\right|\xrightarrow[(N_0,\ldots,N_n)\to(+\infty,\ldots,+\infty)]{}0.$$

Which achieves the proof.

Theorem 3.7. For all $\varphi, \psi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ and $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times \mathbb{R}^n)$, we have

$$\int_0^\infty \int_{\mathbb{R}^n} \langle T, \tau^{\mu}_{(r,x)}(\varphi) \rangle \psi(r,x) dr dx = \langle T, \int_0^\infty \int_{\mathbb{R}^n} \tau^{\mu}_{(r,x)}(\varphi)(.,.) \psi(r,x) dr dx \rangle.$$

Proof. From Proposition 3.5, the integral

$$\int_0^\infty \int_{\mathbb{R}^n} \langle T, \tau^{\mu}_{(r,x)}(\phi) \rangle \psi(r,x) dr dx = \int_0^\infty \int_{\mathbb{R}^n} T * \check{\phi}(r,-x) \psi(r,x) dr dx,$$

is well defined. Since the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ is stable under convolution product, the function

$$(s,y)\mapsto \int_0^\infty \int_{\mathbb{R}^n} \tau^{\mu}_{(r,x)}(\varphi)(s,y) \Psi(r,x) dr dx = \check{\varphi} * \Psi(s,-y)$$

Unauthenticated Download Date | 2/28/18 7:43 AM

C. Baccar

belongs to $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$, and then $\langle T, \int_0^{\infty} \int_{\mathbb{R}^n} \tau^{\mu}_{(r,x)}(\phi)(.,.)\psi(r,x)drdx \rangle$ is also well defined. Let X > 0, by Lemma 3.6, the function

$$\theta_X(s,y) = \int_0^X \int_{[-X,X]^n} \tau^{\mu}_{(r,x)}(\varphi)(s,y) \psi(r,x) dr dx$$

belongs to the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$. It follows that the function

$$(s,y)\mapsto \int \int_{([0,X]\times[-X,X]^n)^c} \tau^{\mu}_{(r,x)}(\varphi)(s,y)\psi(r,x)drdx$$

lies in $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and we have

$$\langle T, \int_0^\infty \int_{\mathbb{R}^n} \tau^{\mu}_{(r,x)}(\varphi)(.,.)\psi(r,x)drdx \rangle =$$

$$\langle T, \int_0^X \int_{[-X,X]^n} \tau^{\mu}_{(r,x)}(\varphi)(.,.)\psi(r,x)drdx \rangle + \langle T, \int \int_{([0,X]\times[-X,X]^n)^c} \tau^{\mu}_{(r,x)}(\varphi)(s,y)\psi(r,x)drdx \rangle.$$
(3.7)

Let $F_X(s,y) = \int \int_{([0,X]\times[-X,X]^n)^c} \tau^{\mu}_{(r,x)}(\varphi)(s,y)\psi(r,x)drdx.$ Then, for every $m \in \mathbb{N}$,

$$N_m^{\mu}(F_X) \leqslant \int \int_{([0,X]\times [-X,X]^n)^c} N_m^{\mu}(\tau_{(r,x)}^{\mu}(\boldsymbol{\varphi})) |\boldsymbol{\psi}(r,x)| dr dx$$

and from (3.5), we get

$$N_m^{\mu}(F_X) \leq CN_{m_2}(\varphi) \int \int_{([0,X]\times [-X,X]^n)^c} (1+r^2+|x|^2)^{m_1} |\Psi(r,x)| dr dx$$

the last inequality shows that

$$\lim_{X\to\infty}F_X=0, \text{ in } \mathbb{H}_{\mu}(]0,+\infty[\times\mathbb{R}^n),$$

and by relation (3.7), we get

$$\begin{split} \langle T, \int_0^\infty \int_{\mathbb{R}^n} \tau^{\mu}_{(r,x)}(\varphi)(.,.) \psi(r,x) dr dx \rangle &= \lim_{X \to \infty} \langle T, \int_0^X \int_{[-X,X]^n} \tau^{\mu}_{(r,x)}(\varphi)(.,.) \psi(r,x) dr dx \rangle \\ &= \lim_{X \to \infty} \langle T, \theta_X \rangle. \end{split}$$

Let $\theta_{N,X}$, $N = (N_0, ..., N_n)$ be the sequence defined in Lemma 3.6, then

$$\begin{split} \langle T, \mathbf{\theta}_{X} \rangle &= \lim_{N \to (\infty, \dots, \infty)} \langle T, \mathbf{\theta}_{N,X} \rangle \\ &= \lim_{N \to (\infty, \dots, \infty)} \frac{X}{N_{0}} \frac{2X}{N_{1}} \dots \frac{2X}{N_{n}} \sum_{k_{0}=0}^{N_{0}-1} \dots \sum_{k_{n}=0}^{N_{n}-1} \psi \left(\frac{k_{0}X}{N_{0}}, -X + \frac{2X}{N_{1}} k_{1}, \dots, -X + \frac{2X}{N_{n}} k_{n} \right) \\ \langle T, \tau^{\mu}_{(\frac{k_{0}X}{N_{0}}, -X + \frac{2X}{N_{1}} k_{1}, \dots, -X + \frac{2X}{N_{n}} k_{n})}(\mathbf{\phi})(.,.) \rangle \\ &= \int_{0}^{X} \int_{[-X,X]^{n}} \langle T, \tau^{\mu}_{(r,x)}(\mathbf{\phi}) \rangle \psi(r,x) dr dx. \end{split}$$

216

Finally,

$$\begin{split} \langle T, \int_0^\infty \int_{\mathbb{R}^n} \tau_{(r,x)}^\mu(\phi)(.,.)\psi(r,x)drdx \rangle &= \lim_{X \to \infty} \int_0^X \int_{[-X,X]^n} \langle T, \tau_{(r,x)}^\mu(\phi) \rangle \psi(r,x)drdx \\ &= \int_0^\infty \int_{\mathbb{R}^n} \langle T, \tau_{(r,x)}^\mu(\phi) \rangle \psi(r,x)drdx. \end{split}$$

Proposition 3.8. For every $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and every $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$; we have

$$\mathscr{H}_{\mu}(T_{T*\varphi}) = \lambda^{-\mu-\frac{1}{2}}\mathscr{H}_{\mu}(\varphi)\mathscr{H}_{\mu}(T).$$

Where $T_{T*\phi}$ is the element of $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$, defined by

$$\langle T_{T*\varphi},\psi\rangle = \int_0^{+\infty} \int_{\mathbb{R}^n} T*\varphi(r,x)\psi(r,x)\frac{drdx}{(2\pi)^{\frac{n}{2}}}$$

Proof. From Proposition 3.5, for $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$, the function $T * \varphi$ is continuous on $[0, +\infty[\times\mathbb{R}^n]$, and slowly increasing. Thus, $T_{T*\varphi}$ is an element of $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n]$ and for every $\psi \in \mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n]$, we have

$$\langle \mathscr{H}_{\mu}(T_{T*\phi}), \Psi \rangle = \langle T_{T*\phi}, \mathscr{H}_{\mu}(\Psi) \rangle = \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \langle T, \tau^{\mu}_{(r,-x)}(\check{\phi}) \rangle \mathscr{H}_{\mu}(\Psi)(r,x) dr dx.$$

Applying Theorem 3.7, we obtain

$$\langle \mathscr{H}_{\mu}(T_{T*\varphi}), \Psi \rangle = \langle T, \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \tau^{\mu}_{(r,-x)}(\check{\varphi})(.,.) \mathscr{H}_{\mu}(\Psi)(r,x) \frac{drdx}{(2\pi)^{n/2}} \rangle.$$
(3.8)

Now, for every $(s, y) \in [0, +\infty[\times \mathbb{R}^n]$, we have

$$\begin{split} \int_0^{+\infty} \int_{\mathbb{R}^n} \tau^{\mu}_{(r,-x)}(\boldsymbol{\varphi})(s,y) \mathscr{H}_{\mu}(\boldsymbol{\psi})(r,x) \frac{drdx}{(2\pi)^{n/2}} \\ &= \int_0^{+\infty} \int_{\mathbb{R}^n} \tau^{\mu}_{(s,-y)}(\boldsymbol{\varphi})(r,x) \mathscr{H}_{\mu}(\boldsymbol{\psi})(r,x) \frac{drdx}{(2\pi)^{n/2}} \\ &= \int_0^{+\infty} \int_{\mathbb{R}^n} \mathscr{H}_{\mu}(\tau^{\mu}_{(s,-y)}(\boldsymbol{\varphi}))(r,x) \boldsymbol{\psi}(r,x) \frac{drdx}{(2\pi)^{n/2}}. \end{split}$$

By means of relation (3.4), we obtain

$$\begin{split} \int_0^{+\infty} \int_{\mathbb{R}^n} \tau_{(r,-x)}(\check{\varphi})(s,y) \mathscr{H}_{\mu}(\psi)(r,x) \frac{drdx}{(2\pi)^{n/2}} \\ &= \int_0^{+\infty} \int_{\mathbb{R}^n} r^{-\mu - \frac{1}{2}} \varphi_{s,y}^{\mu}(r,x) \mathscr{H}_{\mu}(\varphi)(r,x) \psi(r,x) \frac{drdx}{(2\pi)^{1/2}} \\ &= \mathscr{H}_{\mu}(r^{-\mu - \frac{1}{2}} \mathscr{H}_{\mu}(\varphi) \psi)(s,y). \end{split}$$

217

Q.E.D.

C. Baccar

Replacing in (3.8), it follows that for $\varphi, \psi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ and $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times \mathbb{R}^n)$,

$$egin{aligned} &\langle\mathscr{H}_{\mu}(T_{T*\phi}),\psi
angle = \langle T,\mathscr{H}_{\mu}(r^{-\mu-rac{1}{2}}\mathscr{H}_{\mu}(\phi)\psi)
angle \ &= \langle r^{-\mu-rac{1}{2}}\mathscr{H}_{\mu}(\phi)\mathscr{H}_{\mu}(T),\psi
angle. \end{aligned}$$

This completes the proof.

We denote by $\mathbb{M}(]0, \infty[\times \mathbb{R}^n)$ the subspace of $\mathscr{M}(]0, \infty[\times \mathbb{R}^n)$ consisting of functions f such that for every $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$, there is $m = m(k, \alpha) \in \mathbb{N}$, for which the function

$$(r,x)\mapsto (1+r^2+|x|^2)^m\left(rac{\partial}{\partial r^2}
ight)^k D^{lpha}_x(f(r,x)),$$

is bounded on $[0, +\infty] \times \mathbb{R}^n$.

 $\mathbb{M}(]0,\infty[\times\mathbb{R}^n)$ is equipped with the topology induced by $\mathscr{M}(]0,\infty[\times\mathbb{R}^n)$.

Definition 3.9. We define the space $\mathbb{O}'_{\mu}(]0, \infty[\times\mathbb{R}^n)$ to be the subspace of $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ formed by the distributions T such that $\mathscr{H}_{\mu}(T)$ is an infinitely differentiable function on $[0, +\infty[\times\mathbb{R}^n, \text{ verifying for every } (k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$, there exists $m = m(k, \alpha) \in \mathbb{N}$, such that the function

$$(r,x)\mapsto (1+r^2+|x|^2)^m\left(rac{\partial}{\partial r^2}
ight)^k D^{lpha}_x(r^{-\mu-rac{1}{2}}\mathscr{H}_\mu(T))(r,x)$$

is bounded on $[0, +\infty[\times \mathbb{R}^n]$.

The space $\mathbb{O}'_u(]0,\infty[\times\mathbb{R}^n)$ is endowed with the topology generated by the family

$$Q^{\mu}_{m,\phi}(T) = \gamma^{\mu}_{m,\phi}(r^{\mu+\frac{1}{2}}\mathscr{H}_{\mu}(T)), \quad \forall \phi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^{n}),$$

where, $\gamma_{m,\phi}^{\mu}$ is defined by relation (2.4).

Remark 3.1. It is clear from Definition 3.9, that for every $T \in \mathbb{O}'_{\mu}(]0, \infty[\times \mathbb{R}^n)$, the function

$$(r,x)\mapsto r^{-\mu-\frac{1}{2}}\mathscr{H}_{\mu}(T)(r,x),$$

is a multiplier of the space $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$.

Lemma 3.10. For every $T \in \mathbb{O}'_{\mu}(]0, \infty[\times \mathbb{R}^n)$, the mapping $\varphi \mapsto T * \varphi$ is continuous from $\mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ into itself.

Proof. From Proposition 3.8 and Definition 3.9, for every $T \in \mathbb{O}'_{\mu}(]0, \infty[\times \mathbb{R}^n)$ and every $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$, we have

$$\mathscr{H}_{\mu}(T * \mathbf{\phi})(\lambda_0, \lambda) = \lambda_0^{-\mu - \frac{1}{2}} \mathscr{H}_{\mu}(T)(\lambda_0, \lambda) \mathscr{H}_{\mu}(\mathbf{\phi})(\lambda_0, \lambda).$$

Now, from Remark 3.1, the mapping

$$\psi \mapsto \lambda_0^{-\mu - \frac{1}{2}} \mathscr{H}_{\mu}(T) \psi$$

is continuous from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ into itself, then the result follows from the fact that \mathscr{H}_{μ} is a topological isomorphism from $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ onto itself.

Proposition 3.11. The Hankel transform \mathscr{H}_{μ} is a topological isomorphism from $\mathbb{O}'_{\mu}(]0, \infty[\times \mathbb{R}^n)$ into $r^{\mu+\frac{1}{2}}\mathbb{M}(]0, \infty[\times \mathbb{R}^n)$.

Where $r^{\mu+\frac{1}{2}}\mathbb{M}(]0,\infty[\times\mathbb{R}^n)$ denotes the space of functions f such that

$$f(r,x) = r^{\mu + \frac{1}{2}}g(r,x),$$

with $g \in \mathbb{M}(]0, \infty[\times \mathbb{R}^n)$, equipped with the family of semi norms

$$\widetilde{\gamma}^{\mu}_{m,\phi}(f) = \gamma^{\mu}_{m,\phi}(r^{-\mu-\frac{1}{2}}f).$$

Proof. • It is clear from Definition 3.9 that \mathscr{H}_{μ} is an injective mapping from $\mathbb{O}'_{\mu}(]0, \infty[\times \mathbb{R}^n)$ into $r^{\mu+\frac{1}{2}}\mathbb{M}(]0, \infty[\times \mathbb{R}^n)$.

• Let $g \in r^{\mu+\frac{1}{2}}\mathbb{M}(]0, \infty[\times\mathbb{R}^n)$, there exists $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ such that for every $(r, x) \in [0, +\infty[\times\mathbb{R}^n, \infty[\times\mathbb{R}^n, \infty[\times\mathbb{$

$$\mathscr{H}_{\mu}(T)(r,x) = g(r,x) = r^{\mu+\frac{1}{2}}f(r,x),$$

with $f \in \mathbb{M}(]0, \infty[\times \mathbb{R}^n)$.

This shows that T belongs to $\mathbb{O}'_{\mu}(]0, \infty[\times\mathbb{R}^n)$ and that \mathscr{H}_{μ} is a bijective mapping from $\mathbb{O}'_{\mu}(]0, \infty[\times\mathbb{R}^n)$ into $r^{\mu+\frac{1}{2}}\mathbb{M}(]0, \infty[\times\mathbb{R}^n)$.

On the other hand, for $T \in \mathbb{O}'_{\mu}(]0, \infty[\times \mathbb{R}^n)$ and for every $\varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ and $m \in \mathbb{N}$, we have

$$\widetilde{\gamma}_{m,\varphi}^{\mu}(\mathscr{H}_{\mu}(T)) = \gamma_{m,\varphi}^{\mu}(r^{-\mu-\frac{1}{2}}\mathscr{H}_{\mu}(T)) = Q_{m,\varphi}^{\mu}(T).$$

Remark 3.2. It is clear from Lemma 3.10 that, for every $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ and $S \in \mathbb{O}'_{\mu}(]0, \infty[\times\mathbb{R}^n)$ the mapping

 $\varphi \longmapsto < T, S * \varphi >,$

defines an element of $\mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$.

Definition 3.12. For every $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ and $S \in \mathbb{O}'_{\mu}(]0, \infty[\times \mathbb{R}^n)$, we define the convolution product T * S by the following brackets

$$\langle T * S, \varphi \rangle = \langle T, S * \varphi \rangle, \quad \varphi \in \mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n).$$

Proposition 3.13. For every $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times \mathbb{R}^n)$ and $S \in \mathbb{O}'_{\mu}(]0, \infty[\times \mathbb{R}^n)$, we have

$$\mathscr{H}_{\mu}(T * S) = \lambda_0^{-\mu - \frac{1}{2}} \mathscr{H}_{\mu}(S)(\lambda_0, \lambda) \mathscr{H}_{\mu}(T).$$

Proof. Let φ be in $\mathbb{H}_{\mu}(]0, +\infty[\times \mathbb{R}^n)$,

$$\langle \mathscr{H}_{\mu}(T * S), \varphi \rangle = \langle T * S, \mathscr{H}_{\mu}(\varphi) \rangle$$

= $\langle T, S * \mathscr{H}_{\mu}(\varphi) \rangle$.

Using Proposition 3.8, Remark 3.1 and the fact that the Hankel transform is an isomorphism from $\mathbb{H}_{\mu}([0, +\infty[\times\mathbb{R}^n) \text{ onto itself, we get})$

$$\begin{split} \langle \mathscr{H}_{\mu}(T*S), \varphi \rangle &= \langle T, \mathscr{H}_{\mu}(\lambda_{0}^{-\mu-\frac{1}{2}}\mathscr{H}_{\mu}(S)\varphi) \rangle \\ &= \langle \mathscr{H}_{\mu}(T), \lambda_{0}^{-\mu-\frac{1}{2}}\mathscr{H}_{\mu}(S)\varphi \rangle \\ &= \langle \lambda_{0}^{-\mu-\frac{1}{2}}\mathscr{H}_{\mu}(S)\mathscr{H}_{\mu}(T), \varphi \rangle. \end{split}$$

This proves the result.

Example 3.3. Let δ_{μ} be defined on $\mathbb{H}_{\mu}(]0, +\infty[\times\mathbb{R}^n)$ by

$$\langle \delta_{\mu}, \varphi \rangle = \lim_{(r,x) \to (0,0)} r^{-\mu - \frac{1}{2}} \varphi(r,x)$$

Then, δ_{μ} belongs to the dual space $\mathbb{H}'_{\mu}([0, +\infty[\times \mathbb{R}^n)])$ and by standard computation, we have

$$\mathscr{H}_{\mu}(\delta_{\mu}) = r^{\mu + \frac{1}{2}} \otimes 1.$$

In particular, δ_{μ} belongs to the subspace $\mathbb{O}'_{\mu}(]0, \infty[\times\mathbb{R}^n)$ then, from Proposition 3.11 and Proposition 3.13, for every $T \in \mathbb{H}'_{\mu}(]0, +\infty[\times\mathbb{R}^n)$, we have

$$\delta_{\mu} * T = T.$$

References

- [1] J. Barros-Neto, An introduction to the theory of distributions, Marcel Dekker Inc., 1973.
- [2] J. Betancor and I. Marrero, *Multipliers of Hankel transformable generalized functions*, Comment. Math. Univ. Carolin 33 (3) (1992), 389–401.
- [3] A. Erdélyi and H. Bateman, Tables of integral transforms, McGraw-Hill, 1954.
- [4] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi and H. Bateman, *Higher transcendental functions*, vol. 1 (3), McGraw-Hill New York, 1953.
- [5] N. N. Lebedev Special functions and their applications, Courier Corporation, 1972.
- [6] N. Msehli. L. T. Rachdi and A. Rouz, Fourier Hankel transform and the Zemanian spaces in the half space, Int. Journal of Math. Analysis, 2 (16) (2008), 747–789.
- [7] L. Schwartz, Théorie des distributions, Hermann vol. I/II, Paris, 1957.
- [8] F. Trèves, Introduction to pseudodifferential and Fourier integral operators Volume 2: Fourier integral operators, Springer Science & Business Media, vol. 2, 1980
- [9] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press, 1995
- [10] A. H. Zemanian, *Generalized integral transformations*, Interscience Publishers New York, vol. 18, 1968.

Unauthenticated Download Date | 2/28/18 7:43 AM