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Abstract

We define the Hankel space Hµ(]0,+∞[×Rn); µ>− 1
2 , and its dual H′µ(]0,+∞[×Rn). First, we character-

ize the space Mµ([0,+∞[×Rn) of multipliers of the space Hµ(]0,+∞[×Rn). Next, we define a subspace
O′µ([0,+∞[×Rn) of the dual H′µ(]0,+∞[×Rn) which permits to define and study a convolution product ∗
on H′µ(]0,+∞[×Rn) and we give nice properties.
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1 Introduction.
We define the Hankel space Hµ(]0,+∞[×Rn), µ > − 1

2 to be the space of infinitely differentiable functions
f on ]0,+∞[×Rn, such that for all (k1,α),(k2,β) ∈ N×Nn, the function

(r,x) 7→ rk1 xα(
∂

∂r2 )
k2Dβ

x
(
r−µ− 1

2 f (r,x)
)

is bounded on [0,+∞[×Rn. Where

• ∂

∂r2 =
1
r

∂

∂r
.

• Dβ
x =

( ∂

∂x1

)β1 ...
( ∂

∂xn

)βn ; β =
(
β1,β2, ...βn

)
.

• xα = xα1
1 ...xαn

n ; α =
(
α1,α2, ...αn

)
.

The space Hµ(]0,+∞[×Rn) is equipped with a topology for which it is a Fréchet one [2, 10].
Our investigation in this work is to determine the space of multipliers of Hµ(]0,+∞[×Rn) and a convolution
space for the dual space H′µ(]0,+∞[×Rn) of Hµ(]0,+∞[×Rn).

More precisely, in the second section we define a family of norms Nµ
m, m ∈ N and a distance dµ on

the space Hµ(]0,+∞[×Rn) and we recall some properties. Next, we give the classical description of the
element of H′µ(]0,+∞[×Rn). Also, we define the Fourier-Hankel transform Hµ that will be a topological
isomorphism from Hµ(]0,+∞[×Rn) onto itself and from H′µ(]0,+∞[×Rn) onto itself.

The spaces Hµ(]0,+∞[×Rn) and H′µ(]0,+∞[×Rn) play for the Fourier-Hankel transform Hµ the same
role that play the Schwartz space’s Se(R × Rn) (the space of infinitely differentiable functions on
R×Rn rapidly decreasing together with all their derivatives, even with respect to the first variable) and its
dual
S ′

e (R×Rn) for the usual Fourier transform F [7].
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198 C. Baccar

The second section is devoted to define and study the space of multipliers Mµ([0,+∞[×Rn). This space is
formed by the infinitely differentiable functions θ on [0,+∞[×Rn such that the mapping

ϕ 7→ θϕ

is continuous from Hµ(]0,+∞[×Rn) into itself. Then we give a nice characterization of the elements of
Mµ([0,+∞[×Rn).

In the last section, using the fact that the Fourier-Hankel transform is an isomorphism from
H′µ(]0,+∞[×Rn) onto itself; we define a subspace O′µ([0,+∞[×Rn) of H′µ(]0,+∞[×Rn) which permits
to define the convolution product of an element T ∈O′µ([0,+∞[×Rn) and S ∈H′µ(]0,+∞[×Rn). We prove
in particulier that for every T ∈O′µ([0,+∞[×Rn); the mapping

S 7→ T ∗S,

is continuous from H′µ(]0,+∞[×Rn) into itself and we have

Hµ(T ∗S) = λ
−µ− 1

2
0 Hµ(T )(λ0,λ)Hµ(S)

in H′µ(]0,+∞[×Rn).

2 The multipliers of the Hankel space Hµ(]0,+∞[×Rn).
Through out this paper, µ is a real number; µ > − 1

2 . For all m ∈ N, we define the norm Nµ
m on the space

Hµ(]0,+∞[×Rn) by setting

Nµ
m( f ) = sup

(r,x)∈[0,+∞[×Rn

k1+k2+|α|6m

(
1+ r2 + |x|2

)k1

∣∣∣∣( ∂

∂r2

)k2Dα
x
(
r−µ− 1

2 f
)
(r,x)

∣∣∣∣ . (2.1)

Where |x|2 = x2
1 + ...+ x2

n; x = (x1, ...,xn) ∈ Rn.
And the distance

dµ( f ,g) =
∞

∑
m=0

1
2m

Nµ
m( f −g)

1+Nµ
m( f −g)

.

It is well known that a sequence ( fk)k converges to zero in (Hµ(]0,+∞[×Rn),dµ) if and only if

∀m ∈ N, lim
k→+∞

Nµ
m( fk) = 0.

Moreover, the space Hµ(]0,+∞[×Rn) is a Fréchet space when endowed with the topology generated by
(Nµ

m)m∈N.

Definition 2.1. A function θ defined on [0,+∞[×R is said to be a multiplier of the Hankel space
Hµ(]0,+∞[×Rn) if the mapping

ϕ 7−→ θϕ

is continuous from Hµ(]0,+∞[×Rn) into itself.
The space formed by the multipliers of Hµ(]0,+∞[×Rn) will be denoted by Mµ([0,+∞[×Rn).
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Fourier Hankel multipliers and convolution spaces 199

In this section, we give a nice characterization of the space Mµ([0,+∞[×Rn); also we define a topology
on this space and we establish some interesting results.

Lemma 2.2. For all a,b ∈ R, we have

1+a2

1+b2 6 2(1+ |a−b|2).

Proof. The result is an immediate consequence of the Peetre’s inequality [1, 8], that is if t is a real number
and x,y are vectors in Rn, then (

1+ |x|2

1+ |y|2

)|t|
6 2|t|(1+ |x− y|2)|t|.

Q.E.D.

Lemma 2.3. Let f be an infinitely differentiable function on R, supp( f )= [ 1
2 ,

3
2 ] and f (1)= 1. Let ((rk,xk))k

be a sequence in [0,+∞[×Rn, such that

|(r0,x0)|2 > 1 and |(rk+1,xk+1)|2 > |(rk,xk)|2 +1.

Then, the function ϕ0 defined by

ϕ0(r,x) = rµ+ 1
2

∞

∑
k=0

f (|(r,x)|2−|(rk,xk)|2 +1)(
|(rk,xk)|2 +1

)k

belongs to the space Hµ(]0,+∞[×Rn).

Proof. Let ρ ∈ R, ρ > 1.
For all (r,x) ∈ B(0,ρ) =

{
(r,x) ∈ [0,+∞[×Rn, r2 + |x|2 < ρ2

}
, we have

r−µ− 1
2 ϕ0(r,x) =

k0

∑
k=0

f (|(r,x)|2−|(rk,xk)|2 +1)(
|(rk,xk)|2 +1

)k ,

where k0 = [|− 1
2 +ρ2|]+1, because supp( f ) = [ 1

2 ,
3
2 ].

Consequently, the function
(r,x) 7−→ r−µ− 1

2 ϕ0(r,x)

is infinitely differentiable on [0,+∞[×Rn. Moreover, for all j,m ∈ N and α ∈ Nn, we get

(
1+ r2+|x|2

)m
∣∣∣∣( ∂

∂r2

) jDα
x
(
r−µ− 1

2 ϕ0
)
(r,x)

∣∣∣∣6
2 j(1+ r2 + |x|2

)mPj,α(x)
∞

∑
k=0

f j+|α|(r2 + |x|2− r2
k −|xk|2 +1)(

r2
k + |xk|2 +1

)k .
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200 C. Baccar

Where Pj,α is a real polynomial on Rn. Thus, there exist an integer l and a positive constant C j,α such that

(
1+ r2+|x|2

)m
∣∣∣∣( ∂

∂r2

) jDα
x
(
r−µ− 1

2 ϕ0
)
(r,x)

∣∣∣∣6
C j,α

∞

∑
k=0

(1+ r2 + |x|2)l

∣∣∣ f j+|α|(r2 + |x|2− r2
k −|xk|2 +1)

∣∣∣(
r2

k + |xk|2 +1
)k .

However, Lemma 2.2 involves

(1+ r2 + |x|2)l 6 2l(1+ r2
k + |xk|2)l

(
1+
[√

r2 + |x|2−
√

r2
k + |xk|2

]2
)l

6 2l(1+ r2
k + |xk|2)l (1+ ∣∣r2 + |x|2− r2

k −|xk|2
∣∣)l

6 2l(1+ r2
k + |xk|2)l

(
2+
(
r2 + |x|2− r2

k −|xk|2
)2
)l

.

Consequently,

(
1+ r2 + |x|2

)m
∣∣∣∣( ∂

∂r2

) jDα
x
(
r−µ− 1

2 ϕ0
)
(r,x)

∣∣∣∣6
2lC j,α

∞

∑
k=0

(
2+
(
r2 + |x|2− r2

k + |xk|2
)2
)l ∣∣∣ f j+|α|(r2 + |x|2− r2

k −|xk|2 +1)(
r2

k + |xk|2 +1
)k−l

∣∣∣.
On the other hand from the hypothesis, for all k ∈ N, we have

r2
k + |xk|2 > k+1,

finally, for all (r,x) ∈ [0,+∞[×Rn we get

(
1+ r2 + |x|2

)m
∣∣∣∣( ∂

∂r2

) jDα
x
(
r−µ− 1

2 ϕ0
)
(r,x)

∣∣∣∣6 2lC j,αNα, j,l( f )
∞

∑
k=0

1
(k+2)k−l ,

where Nα, j,l( f ) = sup
t∈R

(2+(t−1)2)l | f j+|α|(t)|. Q.E.D.

Theorem 2.4. The following assumptions are equivalent

i) The function θ is infinitely differentiable on [0,∞[×Rn and for all (k,α) ∈ N×Nn the function

(
∂

∂r2 )
kDα

x (θ)

is slowly increasing, i.e there exists mk,α ∈ N such that the function

(r,x) 7→ (1+ r2 + |x|2)−mk,α(
∂

∂r2 )
kDα

x (θ)(r,x)

is bounded on [0,∞[×Rn.
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Fourier Hankel multipliers and convolution spaces 201

ii) The function θ is a multiplier of the space Hµ(]0,+∞[×Rn).

iii) The function θ is infinitely differentiable on ]0,∞[×Rn and for all (k,α) ∈ N×Nn, the mapping ϕ 7→
( ∂

∂r2 )
kDα

x (θ)ϕ is a continuous endomorphism of Hµ(]0,+∞[×Rn).

Proof. . Suppose that i) is satisfied. Let ϕ be in Hµ(]0,+∞[×Rn). It is clear that θϕ is an infinitely
differentiable function on ]0,∞[×Rn and for all (k,α) ∈ N×Nn,

( ∂

∂r2

)kDα
x
(
r−µ− 1

2 θϕ
)
(r,x) =

k

∑
j=0

∑
β+γ=α

k!
j!(k− j)!

α!
β!γ!

( ∂

∂r2

) jDγ
xθ(r,x)

( ∂

∂r2

)k− jDβ
x
(
r−µ− 1

2 ϕ
)
(r,x).

Where α! = α1!...αn!, α = (α1, ...,αn) ∈Nn. Let m ∈N and (k1,k2,α) ∈N×N×Nn such that k1 +k2 + |α|
6 m. From the hypothesis there exist l ∈ N and Cm such that for all ( j,γ) ∈ N×Nn, j+ |γ|6 m, we have∣∣∣∣( ∂

∂r2 )
jDγ

xθ(r,x)
∣∣∣∣6Cm(1+ r2 + |x|2)l .

So, ∣∣∣∣(1+ r2 + |x|2)k1(
∂

∂r2 )
k2Dα

x (r
−µ− 1

2 θϕ)(r,x)
∣∣∣∣

6Cm(1+ r2 + |x|2)l+k1
k2

∑
j=0

∑
β+γ=α

k2!
j!(k2− j)!

α!
β!γ!

∣∣∣∣( ∂

∂r2

)k2− jDβ
x (r
−µ− 1

2 ϕ)(r,x)
∣∣∣∣

6CmNµ
m+l(ϕ)

k2

∑
j=0

(
k2!

j!(k2− j)!

)(
∑

β+γ=α

α!
β!γ!

)
= 2k2 2|α|CmNµ

m+l(ϕ)

6 2mCmNµ
m+l(ϕ).

This inequality shows that for every ϕ ∈ Hµ(]0,+∞[×Rn), the function θϕ belongs to the space
Hµ(]0,+∞[×Rn) and that the mapping ϕ 7−→ θϕ is continuous from Hµ(]0,+∞[×Rn) into itself.

. Suppose that θ is a multiplier of the space Hµ(]0,+∞[×Rn). Let ψ be the element of Hµ(]0,+∞[×Rn)
defined by

ψ(r,x) = rµ+ 1
2 e−r2−|x|2 .

From the hypothesis the function
ϕ(r,x) = θ(r,x)ψ(r,x),

belongs to the space Hµ(]0,+∞[×Rn) and we have

θ(r,x) = r−µ− 1
2 er2+|x|2

ϕ(r,x), (2.2)

this shows that the function θ is infinitely differentiable on ]0,+∞[×Rn.

Unauthenticated
Download Date | 2/28/18 7:43 AM



202 C. Baccar

Now, the partial differential operators � f (r,x) = rµ+ 1
2 ( ∂

∂r2 )(r−µ− 1
2 f )(r,x) and ∂

∂x j
; 1 6 j 6 n, are con-

tinuous from Hµ(]0,+∞[×Rn) into itself, and for every (k,α) ∈ N×Nn, we have

(
∂

∂r2 )
kDα

x (θ)ϕ =

k

∑
j=0

∑
β+γ=α

(−1)k− j(−1)|β|
k!

j!(k− j)!
α!

β!γ!
( ∂

∂r2

) jDγ
x

(
� j
(

θ�k− jDβ
x ϕ

))
.

Since θ is a multiplier of the space Hµ(]0,+∞[×Rn), the last equality shows that for all (k,α) ∈N×Nn, the
mapping

ϕ 7−→ (
∂

∂r2 )
kDα

x (θ)ϕ,

is continuous from Hµ(]0,+∞[×Rn) into itself.
. Suppose that the function θ satisfies the assertion iii). From the relation (2.2), and for every k ∈ N,

(
∂

∂r2 )
k(θ)(r,x) = er2+|x|2

k

∑
j=0

C j
k2 j(

∂

∂r2 )
k− j(r−µ− 1

2 ϕ)(r,x).

Let us prove that for every (k,α) ∈ N×Nn the function ( ∂

∂r2 )
kDα

x (θ) is slowly increasing. In fact, suppose
that there exists (k0,α0)∈N×Nn, such that the function ( ∂

∂r2 )
k0Dα0

x (θ) is not slowly increasing. Then, there
exists a sequence ((r j,x j)) j ⊂ [0,∞[×Rn such that

• r2
0 + |x0|2 > 1.

• r2
j+1 + |x j+1|2 > 1+ r2

j + |x j|2.

•
( ∂

∂r2 )
k0Dα0

x (θ)(r j,x j)

(1+ r2
j + |x j|2) j

> 1.

From Lemma 2.3, the function

ϕ0(r,x) = rµ+ 1
2

∞

∑
k=0

f (r2 + |x|2− r2
k −|xk|2 +1)(

1+ r2
k + |xk|2

)k

belongs to the Hankel space Hµ(]0,+∞[×Rn) and for all j ∈ N, we have∣∣∣( ∂

∂r2 )
k0Dα0

x (θ)(r j,x j)r
−µ− 1

2
j ϕ(r j,x j)

∣∣∣> f (1)
(1+ r2

j + |x j|2) j

∣∣∣∣( ∂

∂r2 )
k0Dα0

x (θ)(r j,x j)

∣∣∣∣
=

∣∣∣( ∂

∂r2 )
k0Dα0

x (θ)(r j,x j)
∣∣∣

(1+ r2
j + |x j|2) j

> 1.

This contradicts the hypothesis, because

lim
j→+∞

(
∂

∂r2 )
k0Dα0

x (θ)(r j,x j)r
−µ− 1

2
j ϕ(r j,x j) = 0.

The proof of the theorem is complete. Q.E.D.
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Fourier Hankel multipliers and convolution spaces 203

Remark 2.1. From Theorem 2.4 i) and ii), we deduce that the space of multipliers Mµ([0,+∞[×Rn) is
independent of the real parameter µ and will be denoted by M ([0,+∞[×Rn).

In the following, we will define and study a topology of the space M ([0,+∞[×Rn).
For every m∈N and ϕ∈Hµ(]0,+∞[×Rn), we denote by ρ

µ
m,ϕ the seminorm defined on M ([0,+∞[×Rn)

by

ρ
µ
m,ϕ(θ) = sup

(r,x)∈[0,+∞[×Rn

k+|α|6m

∣∣∣∣r−µ− 1
2 ϕ(r,x)

( ∂

∂r2

)kDα
x (θ)(r,x)

∣∣∣∣ .
and we define a basic of neighborhoods of zero in M ([0,+∞[×Rn) by setting

W µ(0) =
{

Bµ
m,ϕ,ε(0); m ∈ N, ϕ ∈Hµ(]0,+∞[×Rn), ε > 0

}
(2.3)

where

Bµ
m,ϕ,ε(0) =

{
θ ∈M ([0,+∞[×Rn); ρ

µ
m,ϕ(θ)< ε

}
.

Then, a sequence (θk)k converges to zero in M ([0,+∞[×Rn) if and only if for all m ∈ N and
ϕ ∈Hµ(]0,+∞[×Rn),

lim
k→+∞

ρ
µ
m,ϕ(θk) = 0.

Since the mapping ϕ 7−→ rν−µϕ = Φ is a topological isomorphism from Hµ(]0,+∞[×Rn) into
Hν(]0,+∞[×Rn) and using the fact that for all m ∈ N and θ ∈M ([0,+∞[×Rn), we have

ρ
µ
m,ϕ(θ) = ρ

ν
m,Φ(θ),

it follows that the set W µ(0) defined by the relation (2.3) is independent of the real parameter µ and will be
denoted by W (0).

Proposition 2.5. i) Let θ be an infinitely differentiable function on [0,+∞[×Rn, such that for all m ∈ N
and ϕ ∈Hµ(]0,+∞[×Rn); ρ

µ
m,ϕ(θ) is finite, then the function θ lies in M ([0,+∞[×Rn).

ii) The family of seminorms defined on M ([0,+∞[×Rn) by

γ
µ
m,ϕ(θ) = Nµ

m(θϕ); θ ∈M ([0,+∞[×Rn) and ϕ ∈Hµ(]0,+∞[×Rn) (2.4)

generates the same topology as the family {ρµ
m,ϕ; m ∈ N, ϕ ∈Hµ(]0,+∞[×Rn)}.

Proof. i) Let ϕ ∈ Hµ(]0,+∞[×Rn) and m ∈ N. By Leibniz formula, for all k1,k2 ∈ N,α ∈ Nα such that
k1 + k2 + |α|6 m, we get

(
1+ r2 + |x|2

)k1
( ∂

∂r2

)k2Dα
x
(
r−µ− 1

2 ϕ(r,x)θ(r,x)
)
=

k2

∑
j=0

∑
β+γ=α

k2!
j!(k2− j)!

α!
β!γ!

× r−µ− 1
2
( ∂

∂r2

)k2− jDβ
x θ(r,x)

(
1+ r2 + |x|2

)k1rµ+ 1
2
( ∂

∂r2

) jDγ
x
(
r−µ− 1

2 ϕ
)
(r,x).
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204 C. Baccar

Thus, for all (r,x) ∈ [0,+∞[×Rn, we have

∣∣(1+ r2 + |x|2
)k1
( ∂

∂r2

)k2Dα
x
(
r−µ− 1

2 ϕ(r,x)θ(r,x)
)∣∣

6
k2

∑
j=0

∑
β+γ=α

k2!
j!(k2− j)!

α!
β!γ!

ρ
µ
k2− j+|β|,Φ j,γ,k1

(θ)

6
k2

∑
j=0

∑
β+γ=α

k2!
j!(k2− j)!

α!
β!γ!

ρ
µ
m,Φ j,γ,k1

(θ). (2.5)

Where, Φ j,γ,k1 is the element of Hµ(]0,+∞[×Rn) given by

Φ j,γ,k1(r,x) =
(
1+ r2 + |x|2

)k1rµ+ 1
2
( ∂

∂r2

) jDγ
x
(
r−µ− 1

2 ϕ
)
(r,x). (2.6)

The inequality (2.5) shows that for all ϕ ∈ Hµ(]0,+∞[×Rn); the function θϕ belongs to the Hankel space
Hµ(]0,+∞[×Rn). The remainder of this proof is the same as the proof iii) implies i) in Theorem 2.4.

ii) Let m,k1,k2 ∈ N,α ∈ Nα such that k1 + k2 + |α| 6 m. Let ϕ ∈ Hµ(]0,+∞[×Rn) and
Φm ∈Hµ(]0,+∞[×Rn) such that

ρ
µ
m,Φm

(θ) = sup{ρµ
m,Φ j,γ,k1

(θ), j 6 k2, γ6 α; k1 + k2 + |α|6 m},

where the functions Φ j,γ,k1 are given by the relation (2.6). The inequality (2.5) involves that

Nµ
m(θϕ)6 2m

ρ
µ
m,Φm

(θ), (2.7)

which means that
γ

µ
m,ϕ(θ)6 2m

ρ
µ
m,Φm

(θ).

. Let θ and ϕ be two infinitely differentiable functions on ]0,∞[×Rn. By induction on |α|, α ∈ Nn, we get

ϕ(r,x)Dα
x θ(r,x) = ∑

β+γ=α

α!
β!γ!

(−1)|β|Dγ
x
(
θ(r,x)Dβ

x ϕ(r,x)
)
. (2.8)

And by induction on k ∈ N, we get also

ϕ(r,x)(
∂

∂r2 )
k
θ(r,x) =

k

∑
p=0

(−1)p k!
p!(k− p)!

(
∂

∂r2 )
k−p(

θ(r,x)(
∂

∂r2 )
p
ϕ(r,x)

)
. (2.9)

Combining the relations (2.8) and (2.9), we deduce that for all (k,α) ∈ N×Nn

r−µ− 1
2 ϕ(r,x)(

∂

∂r2 )
kDα

x θ(r,x) = (2.10)

k

∑
p=0

∑
β+γ=α

(−1)|β|+p k!
p!(k− p)!

α!
β!γ!

(
∂

∂r2 )
k−pDγ

x

(
θ(r,x)(

∂

∂r2 )
pDβ

x r−µ− 1
2 ϕ(r,x)

)
.
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Let m∈N and ϕ∈Hµ(]0,+∞[×Rn), from the last equality, it follows that for every (k,α)∈N×Nn; k+ |α|6
m, we have

∣∣r−µ− 1
2 ϕ(r,x)(

∂

∂r2 )
kDα

x θ(r,x)
∣∣6 k

∑
p=0

∑
β+γ=α

k!
p!(k− p)!

α!
β!γ!

Nµ
k−p+|α|(θΦp,β)

6
k

∑
p=0

∑
β+γ=α

k!
p!(k− p)!

α!
β!γ!

Nµ
m(θΦp,β)

where

Φp,β(r,x) = rµ+ 1
2 (

∂

∂r2 )
pDβ

x r−µ− 1
2 ϕ(r,x) ∈Hµ(]0,+∞[×Rn).

Now, let Φm be an element of Hµ(]0,+∞[×Rn), such that

sup{Nµ
m(θΦp,β), p+ |β|6 m}= Nµ

m(θΦm).

Then,
ρ

µ
m,ϕ(θ)6 2m

γm,Φm(θ).

The proof of the proposition is complete. Q.E.D.

Let C ∞([0,+∞[×Rn) be the space of infinitely differential functions on [0,+∞[×Rn equipped with the
family of seminorms {Pm,l ; (m, l) ∈ N2} defined by

Pm,l( f ) = sup
r2+|x|26l2

k+|α|6m

∣∣( ∂

∂r
)kDα

x f (r,x)
∣∣

and the distance

d( f ,g) =
∞

∑
m=0

∞

∑
l=0

1
2m+l

Pm,l( f −g)
1+Pm,l( f −g)

.

Then, we have the following continuous embedding

Lemma 2.6. M ([0,+∞[×Rn) ↪→ C ∞([0,+∞[×Rn).

Proof. Let ψ ∈ Hµ(]0,+∞[×Rn); ψ(r,x) = rµ+ 1
2 e−r2−|x|2 . Let m ∈ N. From the relation (2.10), for every

θ ∈M ([0,+∞[×Rn), (k,α) ∈ N×Nn, k+ |α|6 m, we have

(
∂

∂r2 )
kDα

x θ(r,x) = er2+|x|2

k

∑
p=0

∑
β+γ=α

(−1)|β|+p k!
p!(k− p)!

α!
β!γ!

(
∂

∂r2 )
k−pDγ

x

(
θ(r,x)(

∂

∂r2 )
pDβ

x r−µ− 1
2 ψ(r,x)

)
.

However, for all k ∈ N, there exist k+1 real polynomials, Q j, 06 j 6 k, such that

(
∂

∂r
)k =

k

∑
j=0

Q j(r)(
∂

∂r2 )
j
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with degree(Q j)6 j. Hence,

(
∂

∂r2 )
kDα

x θ(r,x) = er2+|x|2
k

∑
p=0

∑
β+γ=α

(−1)|β|+p k!
p!(k− p)!

α!
β!γ!

×
{ k−p

∑
j=0

Q j(r)(
∂

∂r2 )
jDγ

x
(
θ(r,x)(

p

∑
i=0

Qi(r)(
∂

∂r2 )
iDβ

x r−µ− 1
2 ψ(r,x))

)}
=

er2+|x|2
k

∑
p=0

∑
β+γ=α

(−1)|β|+p k!
p!(k− p)!

α!
β!γ!

k−p

∑
j=0

Q j(r)(
∂

∂r2 )
jDγ

x
(
r−µ− 1

2 ψp,β(r,x)
)

with

ψp,β(r,x) = rµ+ 1
2 (

p

∑
i=0

Qi(r)(
∂

∂r2 )
iDβ

x r−µ− 1
2 ψ(r,x)

)
.

Now, for all 06 j 6 k− p, there exists C j > 0, such that∣∣Q j(r)
∣∣6C j(1+ r2) j 6C j(1+ r2 + |x|2) j

and consequently

∣∣( ∂

∂r2 )
kDα

x θ(r,x)
∣∣6 er2+|x|2×

k

∑
p=0

∑
β+γ=α

k!
p!(k− p)!

α!
β!γ!

k−p

∑
j=0

C j(1+ r2 + |x|2) j∣∣( ∂

∂r2 )
jDγ

x
(
r−µ− 1

2 ψp,β(r,x)
)∣∣

6 er2+|x|2
k

∑
p=0

∑
β+γ=α

k!
p!(k− p)!

α!
β!γ!

(
k−p

∑
j=0

C j)Nµ
m(θψp,β).

Let ψm ∈Hµ(]0,+∞[×Rn) such that

sup{Nµ
m(θψp,β), p+ |β|6 m}= Nµ

m(θψm).

Then, for all (k,α) ∈ N×Nn such that k+ |α|6 m

∣∣( ∂

∂r2 )
kDα

x θ(r,x)
∣∣6Cm2mer2+|x|2Nµ

m(θψm),

where, Cm = ∑
m
j=0 C j. This equality shows that for all (k,α) ∈ N×Nn

Pl,m(θ)6 2mCmel2
γ

µ
m,ψm(θ).

Q.E.D.

Proposition 2.7. The space M ([0,+∞[×Rn) is Hausdorff and complete.
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Proof. • Let θ∈M ([0,+∞[×Rn) such that θ 6= 0. Let ϕ(r,x) = rµ+ 1
2 e−r2−|x|2 , then ϕ belongs to the Hankel

space and we have
ρ

µ
0,ϕ(θ) = sup

(r,s)∈[0,∞[×Rn
e−r2−|x|2 |θ(r,x)|> 0,

this shows that the space M ([0,+∞[×Rn) is separated
• Let (θk)k be a Cauchy sequence in M ([0,+∞[×Rn). This means that for all m∈N, ϕ∈Hµ(]0,+∞[×Rn),

ρ
µ
m,ϕ(θk−θk′)−−−−→

k,k′→∞

0.

From Lemma 2.6 (θk)k is a Cauchy’s sequence in C ∞([0,+∞[×Rn) which is complete. Consequently, there
exists θ ∈ C ∞([0,+∞[×Rn) such that for all m, l ∈ N

Pm,l(θk−θ)−−−→
k→∞

0.

Let ε > 0, for all m ∈ N, ϕ ∈Hµ(]0,+∞[×Rn) there exists k0 = k0(m,ϕ,ε) ∈ N such that

∀k,k′ > k0; ρ
µ
m,ϕ(θk−θk′)< ε,

this means that for all (r,x) ∈ [0,∞[×Rn and (p,α) ∈ N×Nn; p+ |α|6 m;

∣∣r−µ− 1
2 ϕ(r,x)(

∂

∂r2 )
pDα

x (θk−θk′)(r,x)
∣∣< ε.

and consequently ∣∣r−µ− 1
2 ϕ(r,x)(

∂

∂r2 )
pDα

x (θk−θ)(r,x)
∣∣< ε.

This inequality shows that the function θ belongs to M ([0,+∞[×Rn) and that for all
(m,ϕ) ∈ N×Hµ(]0,+∞[×Rn),

ρ
µ
m,ϕ(θk−θ)−−−→

k→∞
0.

Q.E.D.

In the following, we shall study the continuity of some operators defined on M ([0,+∞[×Rn).

Proposition 2.8.
i) The bilinear map

M ([0,+∞[×Rn)×M ([0,+∞[×Rn)→M ([0,+∞[×Rn)

(θ,ϑ) 7→ θϑ

is separately continuous.

ii) For every (k,α) ∈ N×Nn, the map θ 7→ ( ∂

∂r2 )
kDα

x θ(r,x) is continuous from M ([0,+∞[×Rn) into itself.

Proof.
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i) Fix θ ∈M ([0,+∞[×Rn). Let ϑ ∈M ([0,+∞[×Rn), ϕ ∈Hµ(]0,+∞[×Rn) and let k,m ∈ N, α ∈ Nn such
that k+ |α|6 m.
It is clear that θϑ is an infinitely differentiable function on ]0,∞[×Rn and by applying Leibniz formula we
get for all (r,x) ∈ [0,∞[×Rn,

r−µ− 1
2 ϕ(r,x)(

∂

∂r2 )
kDα

x (θϑ)(r,x) =
k

∑
j=0

∑
β+γ=α

k!
j!(k− j)!

α!
β!γ!

r−µ− 1
2 ϕ(r,x)

× (
∂

∂r2 )
jDβ

x θ(r,x)(
∂

∂r2 )
k− jDγ

xϑ(r,x).

From Theorem 2.4, there exist C j,β > 0 and m j,β ∈ N such that∣∣∣∣( ∂

∂r2 )
jDβ

x θ(r,x)
∣∣∣∣6C j,β(1+ r2 + |x|2)m j,β .

Thus, we have ∣∣∣∣r−µ− 1
2 ϕ(r,x)(

∂

∂r2 )
kDα

x (θϑ)(r,x)
∣∣∣∣

6
k

∑
j=0

∑
β+γ=α

k!
j!(k− j)!

α!
β!γ!

∣∣∣∣r−µ− 1
2 Φ j,β(r,x)(

∂

∂r2 )
k− jDγ

xϑ(r,x)
∣∣∣∣

6
k

∑
j=0

∑
β+γ=α

k!
j!(k− j)!

α!
β!γ!

ρ
µ
k− j+|γ|,Φ j,β

(ϑ)

6
k

∑
j=0

∑
β+γ=α

k!
j!(k− j)!

α!
β!γ!

ρ
µ
m,Φ j,β

(ϑ),

where Φ j,β is the element of Hµ(]0,+∞[×Rn) given by

Φ j,β(r,x) =C j,β(1+ r2 + |x|2)m j,βϕ(r,x).

Let Φm ∈Hµ(]0,+∞[×Rn) such that

ρ
µ
m,Φm

(ϑ) = sup{ρµ
m,Φ j,β

(ϑ), j+ |α|6 m}.

Then, the last inequality involves that

ρ
µ
m,ϕ(θϑ)6 2m

ρ
µ
m,Φm

(ϑ).

ii) Let m ∈ N, (k,α) ∈ N×Nn. Then for all θ ∈M ([0,+∞[×Rn) and ϕ ∈Hµ(]0,+∞[×Rn), we have

ρ
µ
m,ϕ((

∂

∂r2 )
kDα

x θ)6 ρ
µ
m+k+|α|,ϕ(θ).

Which completes the proof. Q.E.D.
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Proposition 2.9. The bilinear mapping

M ([0,+∞[×Rn)×Hµ(]0,+∞[×Rn)→Hµ(]0,+∞[×Rn)

(θ,ϕ) 7→ θϕ

is separately continuous.

Proof. • From Definition 2.1, it follows that for every θ ∈M ([0,+∞[×Rn) the mapping ϕ 7→ θϕ is contin-
uous from Hµ(]0,+∞[×Rn) into itself.
• Let ϕ ∈ Hµ(]0,+∞[×Rn). The continuity of the mapping θ 7→ θϕ from M ([0,+∞[×Rn) into
Hµ(]0,+∞[×Rn) follows from the relation (2.7). Q.E.D.

Proposition 2.10. The mapping ϕ 7→ r−µ− 1
2 ϕ is continuous from Hµ(]0,+∞[×Rn) into M ([0,+∞[×Rn).

Proof. Let ϕ, ϕ ∈ Hµ(]0,+∞[×Rn) and m,k ∈ N, α ∈ Nn such that k + |α| 6 m, we have for all (r,x) ∈
]0,∞[×Rn ∣∣∣∣r−µ− 1

2 ϕ(r,x)(
∂

∂r2 )
kDα

x (r
−µ− 1

2 ϕ)(r,x)
∣∣∣∣6 Nµ

0 (ϕ)N
µ
m(ϕ),

which implies that

ρ
µ
m,ϕ(r−µ− 1

2 ϕ)6 Nµ
0 (ϕ)N

µ
m(ϕ).

Q.E.D.

3 The convolution space of the dual H′µ(]0,+∞[×Rn).
Let H′µ(]0,+∞[×Rn) be the topological dual of the Hankel space Hµ(]0,+∞[×Rn). To give the usual
characterization of the dual H′µ(]0,+∞[×Rn) we use the fact that for all ϕ ∈Hµ(]0,+∞[×Rn), the family

Vµ(ϕ) = {Vm,ε,µ(ϕ), m ∈ N,ε > 0}

is a basis of neighborhoods of ϕ in (Hµ(]0,+∞[×Rn),dµ). Where

Vm,ε,µ(ϕ) = {ψ ∈Hµ(]0,+∞[×Rn); Nµ
m(ϕ−ψ)< ε}.

Thus, we have

Proposition 3.1. A linear mapping

T : Hµ(]0,+∞[×Rn)−→ C

belongs to H′µ(]0,+∞[×Rn) if and only if there exist a positive constant C and an integer m such that for
all ϕ ∈Hµ(]0,+∞[×Rn);

|< T,ϕ > |6CNµ
m(ϕ). (3.1)
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The main result of this section consists to define a subspace of the dual H′µ(]0,+∞[×Rn) which permits
to define and study the convolution product on H′µ(]0,+∞[×Rn). For this we shall define the Hankel trans-
lation operators, the convolution product and the Fourier-Hankel transform and we recall some properties,
see [6].

Definition 3.2. 1. For every (r,x) ∈ [0,+∞[×Rn; the Hankel translation operator τ
µ
(r,x) is defined on

Hµ(]0,+∞[×Rn) by

τ
µ
(r,x)(ϕ)(s,y) =



∫ r+s

|r−s|
ϕ(t,x+ y)Wµ(r,s, t)

tµ+ 1
2

2µΓ(µ+1)
dt; µ > −1

2√
2
π

[
ϕ(r+ s,x+ y)+ϕ(r− s,x+ y)

2

]
; µ = − 1

2 .

2. The convolution product of ϕ, ψ ∈Hµ(]0,+∞[×Rn), is given by

ϕ∗ψ(r,x) =
∫

∞

0

∫
Rn

τ
µ
(r,−x)(ϕ̌)(s,y)ψ(s,y)

dsdy
(2π)n/2 . (3.2)

Where Wµ is the Hankel kernel given by
(rs)−µ+ 1

2 Γ(µ+1)
[
(r+ s)2− t2

]µ− 1
2
[
t2− (r− s)2

]µ− 1
2

22µ−1
√

πΓ(µ+ 1
2 )t

2µ ; |r− s|< t < r+ s

0; otherwise,

and ϕ̌(s,y) = ϕ(s,−y).
To define the Fourier Hankel transform, we introduce the function ϕ

µ
λ0,λ

, (λ0,λ) ∈]0,∞[×Rn to be

ϕ
µ
λ0,λ

(r,x) = Jµ(rλ0)e−i〈λ|x〉. (3.3)

Where

• Jµ is the modified Bessel function defined by

Jµ(z) =
√

zJµ(z).

And Jµ is the Bessel function of the first kind and index µ (see [4, 3, 5, 9]).

• 〈.|.〉 is the usual inner product on Rn, 〈λ|x〉= ∑
n
j=1 λ jx j.

Definition 3.3. The Fourier-Hankel transform Hµ is defined on Hµ(]0,+∞[×Rn) by, for all (λ0,λ) ∈
Hµ(]0,+∞[×Rn);

Hµ(ϕ)(λ0,λ) =
∫

∞

0

∫
Rn

ϕ(r,x)ϕµ
λ0,λ

(r,x)
drdx
(2π)

n
2
.
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It was shown in [6] that

• Hµ is a topological isomorphism from Hµ(]0,+∞[×Rn) onto itself and that the inverse mapping is
given by

H −1
µ ( f )(r,x) =

∫
∞

0

∫
Rn

f (λ0,λ)ϕ
µ
λ0,λ

(r,x)
dλ0dλ

(2π)
n
2
.

• For every ψ ∈ Hµ(]0,+∞[×Rn), (r,x) ∈]0,∞[×Rn the function τ
µ
(r,x)(ψ) belongs to Hµ(]0,+∞[×Rn)

and we have
Hµ(τ

µ
(r,x)(ψ))(λ0,λ) = λ

−µ− 1
2

0 ϕ
µ
λ0,λ

(r,x)Hµ(ψ)(λ0,λ) (3.4)

• For every ϕ,ψ ∈ Hµ(]0,+∞[×Rn), the function ϕ ∗ψ belongs to the space Hµ(]0,+∞[×Rn) and we
have

Hµ(ϕ∗ψ)(λ0,λ) = λ
−µ− 1

2
0 Hµ(ϕ)(λ0,λ)Hµ(ψ)(λ0,λ),

The precedent result allows us to define the Fourier-Hankel transform Hµ on H′µ(]0,+∞[×Rn) by

< Hµ(T ),ϕ >=< T,Hµ(ϕ)>, ϕ ∈Hµ(]0,+∞[×Rn).

Then, Hµ becomes a topological isomorphism from H′µ(]0,+∞[×Rn) onto itself.
Next, we establish other properties for the translation operator and the convolution product that we use

later.

Proposition 3.4. For every (r,x) ∈]0,∞[×Rn, the Hankel translation operator τ
µ
(r,x) is continuous from

Hµ(]0,+∞[×Rn) into itself. Moreover, for all m ∈ N, there exist m1,m2 ∈ N and C > 0 such that

∀ψ ∈Hµ(]0,+∞[×Rn), Nµ
m

(
τ

µ
(r,x)(ψ)

)
6C(1+ r2 + |x|2)m1Nµ

m2
(ψ) . (3.5)

Proof. From the relation (3.4), we have, for every ψ ∈Hµ(]0,+∞[×Rn)

τ
µ
(r,x)(ψ)(s,y) = H −1

µ

(
λ
−µ− 1

2
0 ϕ

µ
λ0,λ

(r,x)Hµ(ψ)

)
(s,y).

Since the transform H −1
µ is continuous from Hµ(]0,+∞[×Rn) onto itself, for every m ∈ N, there exist

m′ ∈ N and C > 0 such that

Nµ
m

(
τ

µ
(r,x)(ψ)

)
= Nµ

m

(
H −1

µ

(
λ
−µ− 1

2
0 ϕ

µ
λ0,λ

(r,x)Hµ(ψ)

))
6CNµ

m′

(
λ
−µ− 1

2
0 ϕ

µ
λ0,λ

(r,x)Hµ(ψ)

)
.

Q.E.D.
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Let

f (λ0,λ) = λ
−µ− 1

2
0 ϕ

µ
λ0,λ

(r,x)Hµ(ψ)(λ0,λ)

=
rµ+1/2

2µΓ(µ+1)
jµ(λ0r)ei〈λ|x〉Hµ(ψ)(λ0,λ),

where jµ is the modified Bessel function defined by

jµ(s) = 2µ
Γ(µ+1)

Jµ(s)
sµ

=


2Γ(µ+1)
√

π Γ(µ+ 1
2 )

∫ 1

0

(
1− t2)µ− 1

2 cos(st)dt; µ >− 1
2

cos(s); µ =− 1
2

It is clear that for every k ∈ N,(
∂

∂λ2
0

)k

( jµ(λ0r)) =
(−r2)k

2kΓ(µ+ k+1)
jµ+k(λ0r). (3.6)

Thus, from Leibniz formula, we have(
∂

∂λ2
0

)k(
λ
−µ−1/2
0 f (λ0,λ)

)
=

rµ+1/2

2µΓ(µ+1)
ei〈λ|x〉

k

∑
l=0

Cl
k

(
∂

∂λ2
0

)l

( jµ(λ0r))
(

∂

∂λ2
0

)k−l (
λ
−µ−1/2
0 Hµ(ψ)(λ0,λ)

)
,

and from the relation (3.6), for every α ∈ Nn

Dα

λ

(
∂

∂λ2
0

)k(
λ
−µ−1/2
0 f (λ0,λ)

)
=

rµ+1/2

2µΓ(µ+1)
×

k

∑
l=0

Cl
k(−1)l r2l

2lΓ(µ+ l +1)
jµ+l(λ0r)Dα

λ

(
ei〈λ|x〉

(
∂

∂λ2
0

)k−l (
λ
−µ−1/2
0 Hµ(ψ)(λ0,λ)

))

=
rµ+1/2

2µΓ(µ+1)

k

∑
l=0

Cl
k(−1)l r2l

2lΓ(µ+ l +1)
jµ+l(λ0r)×

∑
β6α

α!
β!(α−β)!

(ix)βei〈λ|x〉Dα−β

λ

((
∂

∂λ2
0

)k−l (
λ
−µ−1/2
0 Hµ(ψ)(λ0,λ)

))
.

Let k1,k2 ∈ N, α ∈ Nn such that k1 + k2 + |α|6 m′. For every (λ0,λ) ∈ [0,+∞[×Rn,∣∣∣∣∣(1+λ
2
0 + |λ|2)k1Dα

λ

(
∂

∂λ2
0

)k2 (
λ
−µ−1/2
0 f (λ0,λ)

)∣∣∣∣∣
6C12k2+|α|(1+ r2 + |x|2)2m′+[µ+1/2]+1Nµ

m′(Hµ(ψ))

6C2(1+ r2 + |x|2)2m′+[µ+1/2]+1Nµ
m′′(ψ).

Which completes the proof.

Unauthenticated
Download Date | 2/28/18 7:43 AM



Fourier Hankel multipliers and convolution spaces 213

Proposition 3.5. For every T ∈H′µ(]0,+∞[×Rn) and ϕ ∈Hµ(]0,+∞[×Rn), the function defined by

T ∗ϕ(r,x) = 〈T,τµ
(r,−x)(ϕ̆)〉

is continuous on [0,∞[×Rn and slowly increasing.

Proof. Let T ∈ H′µ(]0,+∞[×Rn) and ϕ ∈ Hµ(]0,+∞[×Rn). From Proposition 3.4 and for every (r,x) ∈
[0,∞[×Rn, the function τ

µ
(r,x)(ϕ̆) belongs to the space Hµ(]0,+∞[×Rn). Hence, the convolution product

T ∗ϕ is well defined. Let ((rk,xk))k ⊂ [0,∞[×Rn such that limk→∞(rk,xk) = (r,x).

Let us prove that the sequence
(

τ
µ
(rk,−xk)

(ϕ̆)
)

k
converges to τ

µ
(r,−x)(ϕ̆) in Hµ(]0,+∞[×Rn).

Since the Fourier-Hankel transform is a topological isomorphism from Hµ(]0,+∞[×Rn) onto itself, it is
enough to show that

lim
k→∞

Hµ

(
τ

µ
(rk,−xk)

(ϕ̆)
)
= Hµ

(
τ

µ
(r,−x)(ϕ̆)

)
in Hµ(]0,+∞[×Rn).

By relation (3.4), for every (λ0,λ) ∈ [0,∞[×Rn,

Hµ

(
τ

µ
(rk,−xk)

(ϕ̆)
)
(λ0,λ) = λ

−µ− 1
2

0 ϕ
µ
λ0,λ

(rk,xk)Hµ(ϕ̆)(λ0,λ)

= λ
−µ− 1

2
0 Jµ(λ0rk)e−i〈λ,xk〉Hµ(ϕ̆)(λ0,λ)

=
rµ+1/2

k
2µΓ(µ+1)

jµ(rkλ0)e−i〈λ,xk〉Hµ(ϕ̆)(λ0,λ).

Thus, for every (λ0,λ) ∈ [0,∞[×Rn,

Hµ

(
τ

µ
(rk,−xk)

(ϕ̆)− τ
µ
(r,−x)(ϕ̆)

)
(λ0,λ) =(

rµ+1/2
k jµ(rkλ0)e−i〈λ,xk〉− rµ+1/2 jµ(rλ0)e−i〈λ,x〉

)
×

Hµ(ϕ̆)(λ0,λ)

2µΓ(µ+1)
.

By standard computation and using the relation (3.6), we deduce that for every (k1,k2,α) ∈ N×N×Nn,

lim
k→∞

sup
(λ0,λ)∈[0,∞[×Rn

(
1+λ

2
0 + |λ|2

)k1

∣∣∣∣( ∂

∂λ2
0
)k2Dα

x

(
Hµ

(
τ

µ
(rk,−xk)

(ϕ̆)− τ
µ
(r,−x)(ϕ̆)

)
(λ0,λ)

)∣∣∣∣= 0,

which means that
(

τ
µ
(rk,−xk)

(ϕ̆)
)

converges to
(

τ
µ
(r,−x)(ϕ̆)

)
in Hµ(]0,+∞[×Rn). Since T ∈H′µ(]0,+∞[×Rn),

then

lim
k→∞
〈T,τµ

(rk,−xk)
(ϕ̆〉= 〈T,τµ

(r,−x)(ϕ̆〉,

and consequently, the function T ∗ϕ is continuous on [0,∞[×Rn.
Moreover, from relation (3.1), there exist m ∈ N and C1 > 0 such that for every (r,x) ∈ [0,∞[×Rn,

|T ∗ϕ(r,x)|6C1Nµ
m(τ

µ
(r,−x)(ϕ̆)),

and by relation (3.5)

|T ∗ϕ(r,x)|6C2
(
1+ r2 + |x|2

)m1 Nµ
m2
(ϕ),

so the function T ∗ϕ is slowly increasing and the proof is complete. Q.E.D.

Unauthenticated
Download Date | 2/28/18 7:43 AM



214 C. Baccar

Lemma 3.6. Let ϕ,ψ ∈Hµ(]0,+∞[×Rn). Then, for every X > 0, the sequence (θX ,N)N , N = (N0, ...,Nn) ∈
Nn+1, defined by

θX ,N(s,y) =
X
N0

2X
N1

...
2X
Nn

N0−1

∑
k0=0

...
Nn−1

∑
kn=0

τ
µ

(
k0X
N0

,−X+ 2X
N1

k1,...,−X+ 2X
Nn kn)

(ϕ)(s,y)

ψ(
k0X
N0

,−X +
2X
N1

k1, ...,−X +
2X
Nn

kn)

converges in Hµ(]0,+∞[×Rn) to the function

θX (s,y) =
∫ X

0

∫
[−X ,X ]n

τ
µ
(r,x)(ϕ)(s,y)ψ(r,x)drdx.

Proof. From Proposition 3.4 the function θX ,N belongs to the space Hµ(]0,+∞[×Rn). Now, for every (s,y)∈
]0,∞[×Rn, we have

θX ,N(s,y)−θX (s,y) =
N0−1

∑
k0=0

...
Nn−1

∑
kn=0

∫ k0+1
N0

X

k0X
N0

...
∫ −X+ kn+1

Nn X

−X+ knX
Nn(

τ k0X
N0

,...,−X+ 2kn
Nn X

(ϕ)(s,y)Ψ
(

k0X
N0

, ...,−X +
2kn

Nn
X
)
− τ(r,x)(ϕ)(s,y)Ψ(r,x)

)
drdx.

Let (k1,k2,α) ∈ N×N×Nn, then

(1+ s2 + |y|2)k1(
∂

∂s2 )D
α
y

(
s−µ− 1

2 (θX ,N −θX )(s,y)
)

=
N0−1

∑
k0=0

...
Nn−1

∑
kn=0

∫ k0+1
N0

X

k0X
N0

...
∫ −X+ kn+1

Nn X

−X+ knX
Nn

(1+ s2 + |y|2)k1(
∂

∂s2 )D
α
y(

s−µ− 1
2

(
τ k0X

N0
,...,−X+ 2kn

Nn X
(ϕ)(s,y)Ψ

(
k0X
N0

, ...,−X +
2kn

Nn
X
)
− τ(r,x)(ϕ)(s,y)Ψ(r,x)

))
drdx

=
N0−1

∑
k0=0

...
Nn−1

∑
kn=0

∫ k0+1
N0

X

k0X
N0

...
∫ −X+ kn+1

Nn X

−X+ knX
Nn

(
F(

k0X
N0

, ...,−X +
2kn

Nn
X)−F(r,x,s,y)

)
drdx

where F : ([0,+∞[×Rn)2→ C is defined by

F(r,x,s,y) = (1+ s2 + |y|2)k1(
∂

∂s2 )D
α
y
(
τ(r,x)(ϕ)(s,y)Ψ(r,x)

)
.

The function F is continuous on ([0,+∞[×Rn)2. Moreover,

(1+ r2 + s2 + |x|2 + |y|2)|F(r,x,s,y)|

6 (1+ s2 + |y|2)k1+1(
∂

∂s2 )
k2 Dα

y

(
s−µ− 1

2 τ(r,x)(ϕ)(s,y)
)
(1+ r2 + |x|2)|Ψ(r,x)|

6 (1+ s2 + |y|2)k1+1(
∂

∂s2 )
k2 Dα

y

(
s−µ− 1

2 τ(r,x)(ϕ)(s,y)
)
(1+ r2 + |x|2)2+[µ+ 1

2 ]|r−µ− 1
2 Ψ(r,x)|

6 Nµ
k1+k2+|α|+1

(
τ

µ
(r,x)(ϕ)

)
(1+ r2 + |x|2)2+[µ+ 1

2 ]|r−µ− 1
2 Ψ(r,x)|
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and by Proposition 3.4, we get

(1+ r2 + s2 + |x|2 + |y|2)|F(r,x,s,y)|

6CNµ
m1
(ϕ)(1+ r2 + |x|2)m2+[µ+ 1

2 ]|(r−µ− 1
2 Ψ(r,x))|

6CNµ
m1
(ϕ)Nµ

m2+[µ+ 1
2 ]
(Ψ).

The last inequality shows that
lim

r2+s2+|y|2+|x|2→+∞

F(r,x,s,y) = 0

and consequently, the function F is uniformly continuous.
Let ε > 0, there exists α > 0 such that for |r− r′| < α, |x j − x′j| < α, 1 6 j 6 n; we have for every

(s,y) ∈ [0,+∞[×Rn,

|F(r,x,s,y)−F(r′,x′,s,y)|6 ε.

So for (N0, ...,Nn) ∈ (N∗)n+1, such that X
N0

< α, 2X
N j

< α, 16 j 6 n, we get for every (s,y) ∈ [0,+∞[×Rn,

∣∣∣(1+ s2 + |y|2)k1(
∂

∂s2 )D
α
y

(
s−µ− 1

2 (θX ,N−θX )(s,y)
)∣∣∣

6 ε

N0−1

∑
k0=0

...
Nn−1

∑
kn=0

∫ k0+1
N0

X

k0X
N0

...
∫ −X+ kn+1

Nn X

−X+ knX
Nn

drdx1...dxn

6 ε

N0−1

∑
k0=0

...
Nn−1

∑
kn=0

X
N0

2X
N1

...
2X
Nn

= ε2nXn+1.

This proves that for every (k1,k2,α) ∈ N×N×Nn,

sup
(s,y)∈[0,+∞[×Rn

∣∣∣∣(1+ s2 + |y|2)k1(
∂

∂s2 )D
α
y

(
s−µ− 1

2 (θX ,N −θX )(s,y)
)∣∣∣∣−−−−−−−−−−−−−−→

(N0,...,Nn)→(+∞,...,+∞)
0.

Which achieves the proof. Q.E.D.

Theorem 3.7. For all ϕ,ψ ∈Hµ(]0,+∞[×Rn) and T ∈H′µ(]0,+∞[×Rn), we have∫
∞

0

∫
Rn
〈T,τµ

(r,x)(ϕ)〉ψ(r,x)drdx = 〈T,
∫

∞

0

∫
Rn

τ
µ
(r,x)(ϕ)(., .)ψ(r,x)drdx〉.

Proof. From Proposition 3.5, the integral∫
∞

0

∫
Rn
〈T,τµ

(r,x)(ϕ)〉ψ(r,x)drdx =
∫

∞

0

∫
Rn

T ∗ ϕ̆(r,−x)ψ(r,x)drdx,

is well defined. Since the space Hµ(]0,+∞[×Rn) is stable under convolution product, the function

(s,y) 7→
∫

∞

0

∫
Rn

τ
µ
(r,x)(ϕ)(s,y)ψ(r,x)drdx = ϕ̆∗ψ(s,−y)
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belongs to Hµ(]0,+∞[×Rn), and then 〈T,
∫

∞

0

∫
Rn

τ
µ
(r,x)(ϕ)(., .)ψ(r,x)drdx〉 is also well defined.

Let X > 0, by Lemma 3.6, the function

θX (s,y) =
∫ X

0

∫
[−X ,X ]n

τ
µ
(r,x)(ϕ)(s,y)ψ(r,x)drdx

belongs to the space Hµ(]0,+∞[×Rn). It follows that the function

(s,y) 7→
∫ ∫

([0,X ]×[−X ,X ]n)c
τ

µ
(r,x)(ϕ)(s,y)ψ(r,x)drdx

lies in Hµ(]0,+∞[×Rn) and we have

〈T,
∫

∞

0

∫
Rn

τ
µ
(r,x)(ϕ)(., .)ψ(r,x)drdx〉= (3.7)

〈T,
∫ X

0

∫
[−X ,X ]n

τ
µ
(r,x)(ϕ)(., .)ψ(r,x)drdx〉+ 〈T,

∫ ∫
([0,X ]×[−X ,X ]n)c

τ
µ
(r,x)(ϕ)(s,y)ψ(r,x)drdx〉.

Let FX (s,y) =
∫ ∫

([0,X ]×[−X ,X ]n)c
τ

µ
(r,x)(ϕ)(s,y)ψ(r,x)drdx.

Then, for every m ∈ N,

Nµ
m(FX )6

∫ ∫
([0,X ]×[−X ,X ]n)c

Nµ
m(τ

µ
(r,x)(ϕ))|ψ(r,x)|drdx

and from (3.5), we get

Nµ
m(FX )6CNm2(ϕ)

∫ ∫
([0,X ]×[−X ,X ]n)c

(1+ r2 + |x|2)m1 |ψ(r,x)|drdx.

the last inequality shows that
lim

X→∞
FX = 0, in Hµ(]0,+∞[×Rn),

and by relation (3.7), we get

〈T,
∫

∞

0

∫
Rn

τ
µ
(r,x)(ϕ)(., .)ψ(r,x)drdx〉= lim

X→∞
〈T,

∫ X

0

∫
[−X ,X ]n

τ
µ
(r,x)(ϕ)(., .)ψ(r,x)drdx〉

= lim
X→∞
〈T,θX 〉.

Let θN,X ,N = (N0, ...,Nn) be the sequence defined in Lemma 3.6, then

〈T,θX 〉= lim
N→(∞,...,∞)

〈T,θN,X 〉

= lim
N→(∞,...,∞)

X
N0

2X
N1

...
2X
Nn

N0−1

∑
k0=0

...
Nn−1

∑
kn=0

ψ

(
k0X
N0

,−X +
2X
N1

k1, ...,−X +
2X
Nn

kn

)
〈T,τµ

(
k0X
N0

,−X+ 2X
N1

k1,...,−X+ 2X
Nn kn)

(ϕ)(., .)〉

=
∫ X

0

∫
[−X ,X ]n

〈T,τµ
(r,x)(ϕ)〉ψ(r,x)drdx.
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Finally,

〈T,
∫

∞

0

∫
Rn

τ
µ
(r,x)(ϕ)(., .)ψ(r,x)drdx〉= lim

X→∞

∫ X

0

∫
[−X ,X ]n

〈T,τµ
(r,x)(ϕ)〉ψ(r,x)drdx

=
∫

∞

0

∫
Rn
〈T,τµ

(r,x)(ϕ)〉ψ(r,x)drdx.

Q.E.D.

Proposition 3.8. For every T ∈H′µ(]0,+∞[×Rn) and every ϕ ∈Hµ(]0,+∞[×Rn); we have

Hµ(TT∗ϕ) = λ
−µ− 1

2 Hµ(ϕ)Hµ(T ).

Where TT∗ϕ is the element of H′µ(]0,+∞[×Rn), defined by

〈TT∗ϕ,ψ〉=
∫ +∞

0

∫
Rn

T ∗ϕ(r,x)ψ(r,x)
drdx
(2π)

n
2
.

Proof. From Proposition 3.5, for T ∈ H′µ(]0,+∞[×Rn) and ϕ ∈ Hµ(]0,+∞[×Rn), the function T ∗ ϕ is
continuous on [0,+∞[×Rn, and slowly increasing. Thus, TT∗ϕ is an element of H′µ(]0,+∞[×Rn) and for
every ψ ∈Hµ(]0,+∞[×Rn), we have

〈Hµ(TT∗ϕ),ψ〉= 〈TT∗ϕ,Hµ(ψ)〉=
∫ +∞

0

∫
Rn
〈T,τµ

(r,−x)(ϕ̆)〉Hµ(ψ)(r,x)drdx.

Applying Theorem 3.7, we obtain

〈Hµ(TT∗ϕ),ψ〉= 〈T,
∫ +∞

0

∫
Rn

τ
µ
(r,−x)(ϕ̆)(., .)Hµ(ψ)(r,x)

drdx
(2π)n/2 〉. (3.8)

Now, for every (s,y) ∈ [0,+∞[×Rn, we have∫ +∞

0

∫
Rn

τ
µ
(r,−x)(ϕ)(s,y)Hµ(ψ)(r,x)

drdx
(2π)n/2

=
∫ +∞

0

∫
Rn

τ
µ
(s,−y)(ϕ̌)(r,x)Hµ(ψ)(r,x)

drdx
(2π)n/2

=
∫ +∞

0

∫
Rn

Hµ(τ
µ
(s,−y)(ϕ))(r,x)ψ(r,x)

drdx
(2π)n/2 .

By means of relation (3.4), we obtain∫ +∞

0

∫
Rn

τ(r,−x)(ϕ̆)(s,y)Hµ(ψ)(r,x)
drdx

(2π)n/2

=
∫ +∞

0

∫
Rn

r−µ− 1
2 ϕ

µ
s,y(r,x)Hµ(ϕ)(r,x)ψ(r,x)

drdx
(2π)1/2

= Hµ(r−µ− 1
2 Hµ(ϕ)ψ)(s,y).
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Replacing in (3.8), it follows that for ϕ, ψ ∈Hµ(]0,+∞[×Rn) and T ∈H′µ(]0,+∞[×Rn),

〈Hµ(TT∗ϕ),ψ〉= 〈T,Hµ(r−µ− 1
2 Hµ(ϕ)ψ)〉

= 〈r−µ− 1
2 Hµ(ϕ)Hµ(T ),ψ〉.

This completes the proof. Q.E.D.

We denote by M(]0,∞[×Rn) the subspace of M (]0,∞[×Rn) consisting of functions f such that for every
(k,α) ∈ N×Nn, there is m = m(k,α) ∈ N, for which the function

(r,x) 7→ (1+ r2 + |x|2)m
(

∂

∂r2

)k

Dα
x ( f (r,x)),

is bounded on [0,+∞[×Rn.
M(]0,∞[×Rn) is equipped with the topology induced by M (]0,∞[×Rn).

Definition 3.9. We define the space O′µ(]0,∞[×Rn) to be the subspace of H′µ(]0,+∞[×Rn) formed by the
distributions T such that Hµ(T ) is an infinitely differentiable function on [0,+∞[×Rn, verifying for every
(k,α) ∈ N×Nn, there exists m = m(k,α) ∈ N, such that the function

(r,x) 7→ (1+ r2 + |x|2)m
(

∂

∂r2

)k

Dα
x (r
−µ− 1

2 Hµ(T ))(r,x)

is bounded on [0,+∞[×Rn.

The space O′µ(]0,∞[×Rn) is endowed with the topology generated by the family

Qµ
m,ϕ(T ) = γ

µ
m,ϕ(rµ+ 1

2 Hµ(T )), ∀ϕ ∈Hµ(]0,+∞[×Rn),

where, γ
µ
m,ϕ is defined by relation (2.4).

Remark 3.1. It is clear from Definition 3.9, that for every T ∈O′µ(]0,∞[×Rn), the function

(r,x) 7→ r−µ− 1
2 Hµ(T )(r,x),

is a multiplier of the space Hµ(]0,+∞[×Rn).

Lemma 3.10. For every T ∈ O′µ(]0,∞[×Rn), the mapping ϕ 7→ T ∗ϕ is continuous from Hµ(]0,+∞[×Rn)
into itself.

Proof. From Proposition 3.8 and Definition 3.9, for every T ∈O′µ(]0,∞[×Rn) and every ϕ∈Hµ(]0,+∞[×Rn),
we have

Hµ(T ∗ϕ)(λ0,λ) = λ
−µ− 1

2
0 Hµ(T )(λ0,λ)Hµ(ϕ)(λ0,λ).

Now, from Remark 3.1, the mapping

ψ 7→ λ
−µ− 1

2
0 Hµ(T )ψ

is continuous from Hµ(]0,+∞[×Rn) into itself, then the result follows from the fact that Hµ is a topological
isomorphism from Hµ(]0,+∞[×Rn) onto itself. Q.E.D.
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Proposition 3.11. The Hankel transform Hµ is a topological isomorphism from O′µ(]0,∞[×Rn) into

rµ+ 1
2 M(]0,∞[×Rn).

Where rµ+ 1
2 M(]0,∞[×Rn) denotes the space of functions f such that

f (r,x) = rµ+ 1
2 g(r,x),

with g ∈M(]0,∞[×Rn), equipped with the family of semi norms

γ̃
µ
m,ϕ( f ) = γ

µ
m,ϕ(r−µ− 1

2 f ).

Proof. • It is clear from Definition 3.9 that Hµ is an injective mapping from O′µ(]0,∞[×Rn) into

rµ+ 1
2 M(]0,∞[×Rn).

• Let g∈ rµ+ 1
2 M(]0,∞[×Rn), there exists T ∈H′µ(]0,+∞[×Rn) such that for every (r,x)∈ [0,+∞[×Rn,

Hµ(T )(r,x) = g(r,x) = rµ+ 1
2 f (r,x),

with f ∈M(]0,∞[×Rn).
This shows that T belongs to O′µ(]0,∞[×Rn) and that Hµ is a bijective mapping from O′µ(]0,∞[×Rn)

into rµ+ 1
2 M(]0,∞[×Rn).

On the other hand, for T ∈O′µ(]0,∞[×Rn) and for every ϕ ∈Hµ(]0,+∞[×Rn) and m ∈ N, we have

γ̃
µ
m,ϕ(Hµ(T )) = γ

µ
m,ϕ(r−µ− 1

2 Hµ(T )) = Qµ
m,ϕ(T ).

Q.E.D.

Remark 3.2. It is clear from Lemma 3.10 that, for every T ∈H′µ(]0,+∞[×Rn) and S ∈O′µ(]0,∞[×Rn) the
mapping

ϕ 7−→< T,S∗ϕ >,

defines an element of H′µ(]0,+∞[×Rn).

Definition 3.12. For every T ∈H′µ(]0,+∞[×Rn) and S∈O′µ(]0,∞[×Rn), we define the convolution product
T ∗S by the following brackets

〈T ∗S,ϕ〉= 〈T,S∗ϕ〉, ϕ ∈Hµ(]0,+∞[×Rn).

Proposition 3.13. For every T ∈H′µ(]0,+∞[×Rn) and S ∈O′µ(]0,∞[×Rn), we have

Hµ(T ∗S) = λ
−µ− 1

2
0 Hµ(S)(λ0,λ)Hµ(T ).

Proof. Let ϕ be in Hµ(]0,+∞[×Rn),

〈Hµ(T ∗S),ϕ〉= 〈T ∗S,Hµ(ϕ)〉
= 〈T,S∗Hµ(ϕ)〉.
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Using Proposition 3.8, Remark 3.1 and the fact that the Hankel transform is an isomorphism from
Hµ(]0,+∞[×Rn) onto itself, we get

〈Hµ(T ∗S),ϕ〉= 〈T,Hµ(λ
−µ− 1

2
0 Hµ(S)ϕ)〉

= 〈Hµ(T ),λ
−µ− 1

2
0 Hµ(S)ϕ〉

= 〈λ−µ− 1
2

0 Hµ(S)Hµ(T ),ϕ〉.

This proves the result. Q.E.D.

Example 3.3. Let δµ be defined on Hµ(]0,+∞[×Rn) by

〈δµ,ϕ〉= lim
(r,x)→(0,0)

r−µ− 1
2 ϕ(r,x).

Then, δµ belongs to the dual space H′µ(]0,+∞[×Rn) and by standard computation, we have

Hµ(δµ) = rµ+ 1
2 ⊗1.

In particular, δµ belongs to the subspace O′µ(]0,∞[×Rn) then, from Proposition 3.11 and Proposition 3.13,
for every T ∈H′µ(]0,+∞[×Rn), we have

δµ ∗T = T.
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